EXISTENCE RESULTS FOR PRIMITIVE ELEMENTS IN CUBIC AND QUARTIC EXTENSIONS OF A FINITE FIELD

被引:5
|
作者
Bailey, Geoff [1 ]
Cohen, Stephen D. [2 ]
Sutherland, Nicole [1 ]
Trudgian, Tim [3 ]
机构
[1] Univ Sydney, Sch Math & Stat, Computat Algebra Grp, Camperdown, NSW 2006, Australia
[2] Univ Glasgow, Sch Math & Stat, Glasgow G12 8QQ, Lanark, Scotland
[3] Australian Def Force Acad, UNSW Canberra, Sch Phys Environm & Math Sci, Campbell, ACT 2610, Australia
基金
澳大利亚研究理事会;
关键词
Primitive elements; finite fields; cubic generators;
D O I
10.1090/mcom/3357
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
With F-q the finite field of q elements, we investigate the following question. If gamma generates F-qn over F-q and if beta is a nonzero element of F-qn, is there always an a is an element of F-q such that beta(gamma + a) is a primitive element? We resolve this case when n = 3, thereby proving a conjecture by Cohen. We also substantially improve on what is known when n = 4.
引用
收藏
页码:931 / 947
页数:17
相关论文
共 50 条