A computational scheme to model the geoid by the modified Stokes formula without gravity reductions

被引:37
|
作者
Sjöberg, LE [1 ]
机构
[1] Royal Inst Technol, Dept Infrastruct, SE-10044 Stockholm, Sweden
关键词
modified Stokes' formula; topographic effects; atmospheric effects; ellipsoidal correction;
D O I
10.1007/s00190-003-0338-1
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
In a modern application of Stokes' formula for geoid determination, regional terrestrial gravity is combined with long-wavelength gravity information supplied by an Earth gravity model. Usually, several corrections must be added to gravity to be consistent with Stokes' formula. In contrast, here all such corrections are applied directly to the approximate geoid height determined from the surface gravity anomalies. In this way, a more efficient workload is obtained. As an example, in applications of the direct and first and second indirect topographic effects significant long-wavelength contributions must be considered, all of which are time consuming to compute. By adding all three effects to produce a combined geoid effect, these long-wavelength features largely cancel. The computational scheme, including two least squares modifications of Stokes' formula, is outlined, and the specific advantages of this technique, compared to traditional gravity reduction prior to Stokes' integration, are summarised in the conclusions and final remarks.
引用
收藏
页码:423 / 432
页数:10
相关论文
共 22 条
  • [1] A computational scheme to model the geoid by the modified Stokes formula without gravity reductions
    L. E. Sjöberg
    Journal of Geodesy, 2003, 77 : 423 - 432
  • [2] The 5 mm geoid model for Estonia computed by the least squares modified Stokes's formula
    Ellmann, Artu
    Mardla, Silja
    Oja, Tonis
    SURVEY REVIEW, 2020, 52 (373) : 352 - 372
  • [3] High-resolution regional geoid computation without applying Stokes’s formula: a case study of the Iranian geoid
    A. A. Ardalan
    E. W. Grafarend
    Journal of Geodesy, 2004, 78 : 138 - 156
  • [4] High-resolution regional geoid computation without applying Stokes's formula: a case study of the Iranian geoid
    Ardalan, AA
    Grafarend, EW
    JOURNAL OF GEODESY, 2004, 78 (1-2) : 138 - 156
  • [5] Computation of gravimetric geoid model using free air vertical gravity gradient anomaly in geoid-quasigeoid formula
    Akdogan, Yunus Aytac
    Ahi, Gonca Okay
    Yildiz, Hasan
    JOURNAL OF APPLIED GEOPHYSICS, 2024, 220
  • [6] Testing Stokes-Helmert geoid model computation on a synthetic gravity field: experiences and shortcomings
    Vanicek, Petr
    Kingdon, Robert
    Kuhn, Michael
    Ellmann, Artu
    Featherstone, Will E.
    Santos, Marcelo C.
    Martinec, Zdenek
    Hirt, Christian
    Avalos-Naranjo, David
    STUDIA GEOPHYSICA ET GEODAETICA, 2013, 57 (03) : 369 - 400
  • [7] Testing Stokes-Helmert geoid model computation on a synthetic gravity field: experiences and shortcomings
    Petr Vaníček
    Robert Kingdon
    Michael Kuhn
    Artu Ellmann
    Will E. Featherstone
    Marcelo C. Santos
    Zdeněk Martinec
    Christian Hirt
    David Avalos-Naranjo
    Studia Geophysica et Geodaetica, 2013, 57 : 369 - 400
  • [8] MODIFIED DISTRIBUTION-FORMULA SCHEME FOR UNSTRUCTURED ADAPTIVE NAVIER-STOKES SOLVERS
    Chan, K. I.
    Ng, E. Y. K.
    INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2005, 2 (03) : 375 - 400
  • [9] AN OPTIMUM WAY TO DETERMINE A PRECISE GRAVIMETRIC GEOID MODEL BASED ON THE LEAST-SQUARES MODIFICATION OF STOKES' FORMULA - A CASE STUDY OF SWEDEN
    Kiamehr, R.
    Sjoberg, L. E.
    ACTA GEODAETICA ET GEOPHYSICA HUNGARICA, 2010, 45 (02): : 148 - 164
  • [10] An optimum way to determine a precise gravimetric geoid model based on the least-squares modification of Stokes’ formula — A case study of Sweden
    R. Kiamehr
    L. E. Sjöberg
    Acta Geodaetica et Geophysica Hungarica, 2010, 45 : 148 - 164