A TOPOLOGICAL VERSION OF ITERATED FUNCTION SYSTEMS

被引:0
|
作者
Mihail, Alexandru [1 ]
机构
[1] Univ Bucharest, Fac Math & Informat, Bucharest, Romania
关键词
iterated function system; shift space; attractor; FRACTALS; SPACE;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of the paper is to give a generalization of the notion of iterated function system in a topological setting, namely to define a topological iterated function system. We will also give some examples of compact metric spaces which are not attractors of iterated function systems but are attractors of topological iterated function systems. In some examples this spaces are homeomorphic with attractors of classical iterated function systems and in others are not.
引用
收藏
页码:105 / 120
页数:16
相关论文
共 50 条
  • [1] Topological version of generalized (infinite) iterated function systems
    Dumitru, Dan
    Ioana, Loredana
    Sfetcu, Razvan-Cornel
    Strobin, Filip
    CHAOS SOLITONS & FRACTALS, 2015, 71 : 78 - 90
  • [2] Topological properties of the attractors of iterated function systems
    Dumitru, Dan
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2011, 19 (03): : 117 - 126
  • [3] On the Space of Iterated Function Systems and Their Topological Stability
    Arbieto, Alexander
    Trilles, Alexandre
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2025, 24 (02)
  • [4] On the Space of Iterated Function Systems and Their Topological StabilityOn the Space of Iterated Function Systems and Their Topological StabilityA. Arbieto, A. Trilles
    Alexander Arbieto
    Alexandre Trilles
    Qualitative Theory of Dynamical Systems, 2025, 24 (2)
  • [5] Shadowing property and topological ergodicity for iterated function systems
    Zhao, Yingcui
    Wang, Lidong
    Lei, Fengchun
    MODERN PHYSICS LETTERS B, 2019, 33 (23):
  • [6] TOPOLOGICAL ENTROPY OF ONE DIMENSIONAL ITERATED FUNCTION SYSTEMS
    Nia, Mehdi Fatehi
    Moeinaddini, Fatemeh
    HONAM MATHEMATICAL JOURNAL, 2020, 42 (04): : 681 - 699
  • [7] ON TOPOLOGICAL ENTROPY AND TOPOLOGICAL PRESSURE OF NON-AUTONOMOUS ITERATED FUNCTION SYSTEMS
    Ghane, Fatemeh H.
    Sarkooh, Javad Nazarian
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2019, 56 (06) : 1561 - 1597
  • [8] Topological Entropy, Topological Pressure and Topological Pseudo Entropy of Iterated Function Systems on Uniform Spaces
    Singh, Moirangthem Binodkumar
    Devi, Thiyam Thadoi
    Mangang, Khundrakpam Binod
    Wang, Huoyun
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2024, 23 (05)
  • [9] Topological entropy for non-autonomous iterated function systems
    Si, Hongying
    Liang, Yali
    Zhang, Junjie
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2024, 30 (09) : 1354 - 1369
  • [10] Topological pressure for an iterated function system
    Wang, Huoyun
    Liao, Xing
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2021, 36 (03): : 483 - 506