Orbits in the Leech lattice

被引:2
|
作者
Allcock, D [1 ]
机构
[1] Univ Texas, Dept Math, Austin, TX 78712 USA
基金
美国国家科学基金会;
关键词
Leech lattices; S-lattices; Golay code; orbit;
D O I
10.1080/10586458.2005.10128938
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We provide an algorithm for determining whether two vectors in the Leech lattice are equivalent under its isometry group, the Conway group Coo of order similar to 8 x 10(18). Our algorithm reduces the test of equivalence to at most four tests under the subgroup 2(12):M-24 and a test under this subgroup to at most 12 tests under M-24. We also give algorithms for testing equivalence under these two subgroups. We describe our intended applications to the symmetry groups of Lorentzian lattices and the enumeration of lattices of dimension similar to 24 with good properties such as having small determinant. Our methods rely on and develop the work of R. T. Curtis.
引用
收藏
页码:491 / 509
页数:19
相关论文
共 50 条
  • [1] THE LEECH LATTICE
    BORCHERDS, RE
    PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1985, 398 (1815): : 365 - 376
  • [2] A LEECH LATTICE MODEM
    LANG, GR
    LONGSTAFF, FM
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 1989, 7 (06) : 965 - 973
  • [3] Octonions and the Leech lattice
    Wilson, Robert A.
    JOURNAL OF ALGEBRA, 2009, 322 (06) : 2186 - 2190
  • [4] A SUBLATTICE OF THE LEECH LATTICE
    MILLER, EY
    WASHBURN, S
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1986, 42 (01) : 9 - 14
  • [5] On the uniqueness of the leech lattice
    Wan, ZX
    EUROPEAN JOURNAL OF COMBINATORICS, 1997, 18 (04) : 455 - 459
  • [6] The height of the Leech lattice
    Chua, KS
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2000, 62 (02) : 243 - 251
  • [7] The Contact Polytope of the Leech Lattice
    Mathieu Dutour Sikirić
    Achill Schürmann
    Frank Vallentin
    Discrete & Computational Geometry, 2010, 44 : 904 - 911
  • [8] LATTICES LIKE THE LEECH LATTICE
    BORCHERDS, RE
    JOURNAL OF ALGEBRA, 1990, 130 (01) : 219 - 234
  • [9] The Contact Polytope of the Leech Lattice
    Sikiric, Mathieu Dutour
    Schurmann, Achill
    Vallentin, Frank
    DISCRETE & COMPUTATIONAL GEOMETRY, 2010, 44 (04) : 904 - 911
  • [10] FAST DECODING OF THE LEECH LATTICE
    BEERY, Y
    SHAHAR, B
    SNYDERS, J
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 1989, 7 (06) : 959 - 967