FaceBase: A Community-Driven Hub for Data-Intensive Research

被引:5
|
作者
Schuler, R. E. [1 ]
Bugacov, A. [1 ]
Hacia, J. G. [2 ]
Ho, T. V. [3 ]
Iwata, J. [4 ]
Pearlman, L. [1 ]
Samuels, B. D. [3 ]
Williams, C. [1 ]
Zhao, Z. [5 ]
Kesselman, C. [1 ]
Chai, Y. [3 ]
机构
[1] Univ Southern Calif, Inst Informat Sci, Viterbi Sch Engn, 4676 Admiralty Way,Suite 1001, Marina Del Rey, CA 90089 USA
[2] Univ Southern Calif, Keck Sch Med, Biochem & Mol Med, Los Angeles, CA 90007 USA
[3] Univ Southern Calif, Ostrow Sch Dent, Ctr Craniofacial Mol Biol, Los Angeles, CA 90007 USA
[4] Univ Texas Hlth Sci Ctr Houston, Sch Dent Diagnost & Biomed Sci, Houston, TX 77030 USA
[5] Univ Texas Hlth Sci Ctr Houston, Sch Biomed Informat, Ctr Precis Hlth, Houston, TX 77030 USA
关键词
data curation; developmental biology; morphogenesis; craniofacial abnormalities; molecular genetics; genomics; CLEFT-LIP; RESOURCE; RNA;
D O I
10.1177/00220345221107905
中图分类号
R78 [口腔科学];
学科分类号
1003 ;
摘要
The FaceBase Consortium, funded by the National Institute of Dental and Craniofacial Research of the National Institutes of Health, was established in 2009 with the recognition that dental and craniofacial research are increasingly data-intensive disciplines. Data sharing is critical for the validation and reproducibility of results as well as to enable reuse of data. In service of these goals, data ought to be FAIR: Findable, Accessible, Interoperable, and Reusable. The FaceBase data repository and educational resources exemplify the FAIR principles and support a broad user community including researchers in craniofacial development, molecular genetics, and genomics. FaceBase demonstrates that a model in which researchers "self-curate" their data can be successful and scalable. We present the results of the first 2.5 y of FaceBase's operations as an open community and summarize the data sets published during this period. We then describe a research highlight from work on the identification of regulatory networks and noncoding RNAs involved in cleft lip with/without cleft palate that both used and in turn contributed new findings to publicly available FaceBase resources. Collectively, FaceBase serves as a dynamic and continuously evolving resource to facilitate data-intensive research, enhance data reproducibility, and perform deep phenotyping across multiple species in dental and craniofacial research.
引用
收藏
页码:1289 / 1298
页数:10
相关论文
共 50 条
  • [1] European AI and EO convergence via a novel community-driven framework for data-intensive innovation
    Troumpoukis, Antonis
    Klampanos, Iraklis
    Pantazi, Despina-Athanasia
    Albughdadi, Mohanad
    Baousis, Vasileios
    Barrilero, Omar
    Bojor, Alexandra
    Branco, Pedro
    Bruzzone, Lorenzo
    Chietera, Andreina
    Fournand, Philippe
    Hall, Richard
    Lazzarini, Michele
    Luna, Adrian
    Nousias, Alexandros
    Perentis, Christos
    Petrakis, George
    Punjani, Dharmen
    Robl, David
    Stamoulis, George
    Tsalapati, Eleni
    Urbanaviciute, Indre
    Weikmann, Giulio
    Ziouvelou, Xenia
    Ziolkowski, Marcin
    Koubarakis, Manolis
    Karkaletsis, Vangelis
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2024, 160 : 505 - 521
  • [2] Community-Driven Data Grids
    Scholl, Tobias
    Kemper, Alfons
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2008, 1 (02): : 1672 - 1677
  • [3] Data-Intensive Research & Scientific Discovery
    Liu, Simon Y.
    PROCEEDINGS 2016 IEEE 40TH ANNUAL COMPUTER SOFTWARE AND APPLICATIONS CONFERENCE WORKSHOPS, VOL 1, 2016, : 342 - 342
  • [4] Data-Intensive Science and Research Integrity
    Resnik, David B.
    Elliott, Kevin C.
    Soranno, Patricia A.
    Smith, Elise M.
    ACCOUNTABILITY IN RESEARCH-ETHICS INTEGRITY AND POLICY, 2017, 24 (06): : 344 - 358
  • [5] Ethics in Data-Intensive Medical Research
    Ranisch, Robert
    Haltaufderheide, Joschka
    ETHIK IN DER MEDIZIN, 2024, 36 (04) : 451 - 458
  • [6] Community-driven health research in the Torres Strait
    Wapau, Hylda
    Kris, Ella
    Roeder, Luisa
    McDonald, Malcolm
    AUSTRALIAN JOURNAL OF PRIMARY HEALTH, 2022, 28 (04) : 289 - 295
  • [7] Community-Driven Data Analysis Training for Biology
    Batut, Berenice
    Hiltemann, Saskia
    Bagnacani, Andrea
    Baker, Dannon
    Bhardwaj, Vivek
    Blank, Clemens
    Bretaudeau, Anthony
    Brillet-Gueguen, Loraine
    Cech, Martin
    Chilton, John
    Clements, Dave
    Doppelt-Azeroual, Olivia
    Erxleben, Anika
    Freeberg, Mallory Ann
    Gladman, Simon
    Hoogstrate, Youri
    Hotz, Hans-Rudolf
    Houwaart, Torsten
    Jagtap, Pratik
    Lariviere, Delphine
    Le Corguille, Gildas
    Manke, Thomas
    Mareuil, Fabien
    Ramirez, Fidel
    Ryan, Devon
    Sigloch, Florian Christoph
    Soranzo, Nicola
    Wolff, Joachim
    Videm, Pavankumar
    Wolfien, Markus
    Wubuli, Aisanjiang
    Yusuf, Dilmurat
    Taylor, James
    Backofen, Rolf
    Nekrutenko, Anton
    Gruening, Bjoern
    CELL SYSTEMS, 2018, 6 (06) : 752 - +
  • [8] Community-Driven Data Curation System for Reusability
    Choi, Dong-Hoon
    Mo, Eunsu
    JCDL'18: PROCEEDINGS OF THE 18TH ACM/IEEE JOINT CONFERENCE ON DIGITAL LIBRARIES, 2018, : 325 - 326
  • [9] Research on the architecture of data-intensive computing platform
    Hou, Ke
    Zhang, Jing
    Fang, Xing
    Journal of Software Engineering, 2015, 9 (03): : 686 - 701
  • [10] FAIR Digital Twins for Data-Intensive Research
    Schultes, Erik
    Roos, Marco
    Bonino da Silva Santos, Luiz Olavo
    Guizzardi, Giancarlo
    Bouwman, Jildau
    Hankemeier, Thomas
    Baak, Arie
    Mons, Barend
    FRONTIERS IN BIG DATA, 2022, 5