Relativistic effects in the chaotic Sitnikov problem

被引:10
|
作者
Kovacs, T. [1 ,2 ]
Bene, Gy. [3 ]
Tel, T. [3 ]
机构
[1] Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany
[2] Hungarian Acad Sci, Konkoly Observ, H-1525 Budapest, Hungary
[3] Eotvos Lorand Univ, Dept Theoret Phys, H-1117 Budapest, Hungary
关键词
chaos; relativistic processes; scattering; methods: numerical; celestial mechanics; FRACTAL BASIN BOUNDARIES; PERIODIC-ORBITS; SCATTERING; MOTIONS; SINGULARITIES;
D O I
10.1111/j.1365-2966.2011.18546.x
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We investigate the phase-space structure of the relativistic Sitnikov problem in the first post-Newtonian approximation. The phase-space portraits show a strong dependence on the gravitational radius which describes the strength of the relativistic pericentre advance. Bifurcations appearing at various gravitational radii are presented. Transient chaotic behaviour related to escapes from the primaries is also studied. Finally, the numerically determined chaotic saddle is investigated in the context of hyperbolic and non-hyperbolic dynamics as a function of the gravitational radius.
引用
收藏
页码:2275 / 2281
页数:7
相关论文
共 50 条
  • [1] Influence of the gravitational radius on asymptotic behavior of the relativistic Sitnikov problem
    Bernal, Juan D.
    Seoane, Jesus M.
    Vallejo, Juan C.
    Huang, Liang
    Sanjuan, Miguel A. F.
    PHYSICAL REVIEW E, 2020, 102 (04)
  • [2] Regular and chaotic solutions of the Sitnikov problem near the 3/2 commensurability
    Jalali, MA
    Pourtakdoust, SH
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 1997, 68 (02): : 151 - 162
  • [3] Regular and Chaotic Solutions of the Sitnikov Problem near the 3/2 Commensurability
    M. A. Jalali
    S. H. Pourtakdoust
    Celestial Mechanics and Dynamical Astronomy, 1997, 68 : 151 - 162
  • [4] ON THE SITNIKOV PROBLEM
    Liu, Jie
    Sun, Yi-Sui
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 1990, 49 (03): : 285 - 302
  • [5] Solution of the Sitnikov Problem
    S. B. Faruque
    Celestial Mechanics and Dynamical Astronomy, 2003, 87 (4) : 353 - 369
  • [6] Solution of the Sitnikov problem - Approximate analytic solution of the Sitnikov problem for low primary eccentricities
    Faruque, SB
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2003, 87 (04): : 353 - 369
  • [7] Stabilized Chaos in the Sitnikov Problem
    Dzhanoev, A. R.
    Loskutov, A.
    Howard, J. E.
    Sanjuan, M. A. F.
    CHAOS IN ASTRONOMY, CONFERENCE 2007, 2009, : 301 - +
  • [8] Symmetries and bifurcations in the Sitnikov problem
    Jiménez-Lara, L
    Escalona-Buendía, A
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2001, 79 (02): : 97 - 117
  • [9] Subharmonic solutions in the sitnikov problem
    Marchesin M.
    Castilho C.
    Qualitative Theory of Dynamical Systems, 2008, 7 (1) : 213 - 226
  • [10] On equilibrium stability in the Sitnikov problem
    V. O. Kalas
    P. S. Krasil’nikov
    Cosmic Research, 2011, 49 : 534 - 537