Dependence properties of order statistics

被引:5
|
作者
Hu, Taizhong [1 ]
Chen, Huaihou [1 ]
机构
[1] Univ Sci & Technol China, Dept Stat & Finance, Hefei 230026, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
balls and bins experiment; counting process; left tail decreasing; order statistics; right tail increasing;
D O I
10.1016/j.jspi.2007.09.013
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let X-1:n <= X-2:n <= ... X-n:n denote the order statistics of independent random variables X-1, X-2, ... X-n with possibly nonidentical distributions for each n. For fixed 1 <= j(1) < j(2) < ... < j(r) ,<= n and (X-1,...,X-r) is an element of R-r, it is shown that if j(1) - i >= max {0, n - m} and A(i,m,y) = {X-i:m > y}, then Delta(i)(y) = P[Xj(i:n) > x(1), X-j2:n > x(2), ... , X-jr:n > x(r)vertical bar A(i,m,y)] is increasing in y, and that if A(i,m,y) is either {X-i:m > y} or {X-i:m <= y}, then Delta(i)(y) is decreasing in i for fixed y < x1 < ... < x(r). It is also shown that if each X-k has a continuous distribution function, and if A(i,m,y) is either {X-i:m = y} or {Xi-1:m < y < X-i:m), then Delta(i)(y) is decreasing in i for fixed y < x(1) < ... < x(r), where Xm+1:m = + infinity. In particular, we obtain that RTI (X-j:n vertical bar X-i:m) for j - i >= max{n - m, 0} and LTD (X-j:n vertical bar X-i:m) for j - i <= min{n - m, 0}. We thus extend the main results in Boland et al. [1996. Bivariate dependence properties of order statistics. J. Multivariate Anal. 56, 75-89] and in Hu and Xie [2006. Negative dependence in the balls and bins experiment with applications to order statistics. J. Multivariate Anal. 97, 1342-1354]. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:2214 / 2222
页数:9
相关论文
共 50 条
  • [1] Bivariate dependence properties of order statistics
    Boland, PJ
    Hollander, M
    JoagDev, K
    Kochar, S
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 1996, 56 (01) : 75 - 89
  • [2] On the dependence structure of order statistics
    Avérous, J
    Genest, C
    Kochar, SC
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2005, 94 (01) : 159 - 171
  • [3] ON THE DEPENDENCE STRUCTURE OF ORDER-STATISTICS AND CONCOMITANTS OF ORDER-STATISTICS
    KIM, SH
    DAVID, HA
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1990, 24 (03) : 363 - 368
  • [4] Total positivity and dependence of order statistics
    de Amo, Enrique
    Quesada-Molina, Jose Juan
    Ubeda-Flore, Manuel
    [J]. AIMS MATHEMATICS, 2023, 8 (12): : 30717 - 30730
  • [5] Dependence structure of spacings of order statistics
    Yao, Junchao
    Burkschat, Marco
    Chen, Huaihou
    Hu, Taizhong
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2008, 37 (15) : 2390 - 2403
  • [6] Stability of Order Statistics under Dependence
    Tomasz Rychlik
    [J]. Annals of the Institute of Statistical Mathematics, 2001, 53 : 877 - 894
  • [7] Stability of order statistics under dependence
    Rychlik, T
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2001, 53 (04) : 877 - 894
  • [8] Dependence orderings for generalized order statistics
    Khaledi, BE
    Kochar, S
    [J]. STATISTICS & PROBABILITY LETTERS, 2005, 73 (04) : 357 - 367
  • [9] Tail dependence between order statistics
    Ferreira, Helena
    Ferreira, Marta
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2012, 105 (01) : 176 - 192
  • [10] Dependence structure of generalized order statistics
    Cramer, Erhard
    [J]. STATISTICS, 2006, 40 (05) : 409 - 413