Ozone exposure upregulates the expression of host susceptibility protein TMPRSS2 to SARS-CoV-2

被引:6
|
作者
Thao Vo [1 ]
Paudel, Kshitiz [1 ]
Choudhary, Ishita [1 ]
Patial, Sonika [1 ]
Saini, Yogesh [1 ]
机构
[1] Louisiana State Univ, Sch Vet Med, Dept Comparat Biomed Sci, 1909 Skip Bertman Dr, Baton Rouge, LA 70803 USA
关键词
ACE2; RESPONSES; COVID-19; MODELS; HEALTH;
D O I
10.1038/s41598-022-04906-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
SARS-CoV-2, a novel coronavirus and an etiologic agent for the current global health emergency, causes acute infection of the respiratory tract leading to severe disease and significant mortality. Ever since the start of SARS-CoV-2, also known as the COVID-19 pandemic, countless uncertainties have been revolving around the pathogenesis and epidemiology of the SARS-CoV-2 infection. While air pollution has been shown to be strongly correlated to increased SARS-CoV-2 morbidity and mortality, whether environmental pollutants such as ground-level ozone affects the susceptibility of individuals to SARS-CoV-2 is not yet established. To investigate the impact of ozone inhalation on the expression levels of signatures associated with host susceptibility to SARS-CoV-2, we analyzed lung tissues collected from mice that were sub-chronically exposed to air or 0.8 ppm ozone for three weeks (4 h/night, 5 nights/week), and analyzed the expression of signatures associated with host susceptibility to SARS-CoV-2. SARS-CoV-2 entry into the host cells is dependent on the binding of the virus to the host cellular receptor, angiotensin-converting enzyme (ACE2), and its subsequent proteolytic priming by the host-derived protease, transmembrane protease serine 2 (TMPRSS2). The Ace2 transcripts were significantly elevated in the parenchyma, but not in the extrapulmonary airways and alveolar macrophages, from ozone-exposed mice. The TMPRSS2 protein and Tmprss2 transcripts were significantly elevated in the extrapulmonary airways, parenchyma, and alveolar macrophages from ozone-exposed mice. A significant proportion of additional known SARS-CoV-2 host susceptibility genes were upregulated in alveolar macrophages and parenchyma from ozone-exposed mice. Our data indicate that the unhealthy levels of ozone in the environment may predispose individuals to severe SARS-CoV-2 infection. Given the severity of this pandemic and the challenges associated with direct testing of host-environment interactions in clinical settings, we believe that this ozone exposure-based study informs the scientific community of the potentially detrimental effects of the ambient ozone levels in determining the host susceptibility to SARS-CoV-2.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Ozone exposure upregulates the expression of host susceptibility protein TMPRSS2 to SARS-CoV-2
    Thao Vo
    Kshitiz Paudel
    Ishita Choudhary
    Sonika Patial
    Yogesh Saini
    Scientific Reports, 12
  • [2] TMPRSS2 VARIATION AND GENOMIC SUSCEPTIBILITY TO SARS-COV-2 INFECTION
    Wang, S.
    Shovlin, C. L.
    THORAX, 2021, 76 : A23 - A23
  • [3] Targeting TMPRSS2 in SARS-CoV-2 Infection
    Baughn, Linda B.
    Sharma, Neeraj
    Elhaik, Eran
    Sekulic, Aleksandar
    Bryce, Alan H.
    Fonseca, Rafael
    MAYO CLINIC PROCEEDINGS, 2020, 95 (09) : 1989 - 1999
  • [4] TMPRSS2 expression dictates the entry route used by SARS-CoV-2 to infect host cells
    Koch, Jana
    Uckeley, Zina M.
    Doldan, Patricio
    Stanifer, Megan
    Boulant, Steeve
    Lozach, Pierre-Yves
    EMBO JOURNAL, 2021, 40 (16):
  • [5] Spiking dependence of SARS-CoV-2 pathogenicity on TMPRSS2
    Abbasi, Asim Z.
    Kiyani, Dania A.
    Hamid, Syeda M.
    Saalim, Muhammad
    Fahim, Ammad
    Jalal, Nasir
    JOURNAL OF MEDICAL VIROLOGY, 2021, 93 (07) : 4205 - 4218
  • [6] TMPRSS2, a novel host-directed drug target against SARS-CoV-2
    Christian Keller
    Eva Böttcher-Friebertshäuser
    Michael Lohoff
    Signal Transduction and Targeted Therapy, 7
  • [7] TMPRSS2, a novel host-directed drug target against SARS-CoV-2
    Keller, Christian
    Boettcher-Friebertshauser, Eva
    Lohoff, Michael
    SIGNAL TRANSDUCTION AND TARGETED THERAPY, 2022, 7 (01)
  • [8] Genetic Analysis of the Coronavirus SARS-CoV-2 Host Protease TMPRSS2 in Different Populations
    Russo, Roberta
    Andolfo, Immacolata
    Lasorsa, Vito Alessandro
    Iolascon, Achille
    Capasso, Mario
    FRONTIERS IN GENETICS, 2020, 11
  • [9] Improving Soluble Expression of SARS-CoV-2 Spike Priming Protease TMPRSS2 with an Artificial Fusing Protein
    Ye, Xiao
    Ling, Xue
    Wu, Min
    Bai, Guijie
    Yuan, Meng
    Rao, Lang
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (13)
  • [10] TMPRSS2 Is Essential for SARS-CoV-2 Beta and Omicron Infection
    Metzdorf, Kristin
    Jacobsen, Henning
    Greweling-Pils, Marina C.
    Hoffmann, Markus
    Lueddecke, Tatjana
    Miller, Felicitas
    Melcher, Lars
    Kempf, Amy M.
    Nehlmeier, Inga
    Bruder, Dunja
    Widera, Marek
    Ciesek, Sandra
    Poehlmann, Stefan
    Cicin-Sain, Luka
    VIRUSES-BASEL, 2023, 15 (02):