Direct observation and control of magnetic monopole defects in an artificial spin-ice material

被引:43
|
作者
Ladak, S. [1 ]
Read, D. E. [1 ]
Branford, W. R. [1 ]
Cohen, L. F. [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Dept Phys, London SW7 2AZ, England
来源
NEW JOURNAL OF PHYSICS | 2011年 / 13卷
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1088/1367-2630/13/6/063032
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Magnetic monopoles have stimulated a great amount of theoretical and experimental interest since their prediction by Dirac in 1931. To date, their presence has evaded detection in high energy experiments despite intensive efforts. Recently, entities that mimic magnetic monopoles have been observed in bulk and planar frustrated materials known as spin-ice materials, and artificial spin-ice materials, respectively. In this paper we discuss the formation of these so-called monopole defects within a cobalt honeycomb artificial spin-ice lattice. Experimental results and micromagnetic simulations show that monopole defects of opposite sign are created at the boundaries of the lattice, and move in opposing directions. Discrepancies between simulations and experimental results demonstrate the importance of quenched disorder. Furthermore, we show that controlled edge nucleated monopole defect formation can be realized with the use of soft magnetic injection pads, which is a very promising development for technological applications based upon magnetic charge.
引用
下载
收藏
页数:11
相关论文
共 50 条
  • [1] Direct observation of magnetic monopole defects in an artificial spin-ice system
    Ladak, S.
    Read, D. E.
    Perkins, G. K.
    Cohen, L. F.
    Branford, W. R.
    NATURE PHYSICS, 2010, 6 (05) : 359 - 363
  • [2] Nanoscale structure of the magnetic induction at monopole defects in artificial spin-ice lattices
    Phatak, C.
    Petford-Long, A. K.
    Heinonen, O.
    Tanase, M.
    De Graef, M.
    PHYSICAL REVIEW B, 2011, 83 (17):
  • [3] Disorder-independent control of magnetic monopole defect population in artificial spin-ice honeycombs
    Ladak, S.
    Walton, S. K.
    Zeissler, K.
    Tyliszczak, T.
    Read, D. E.
    Branford, W. R.
    Cohen, L. F.
    NEW JOURNAL OF PHYSICS, 2012, 14
  • [4] Magnetic monopole density and antiferromagnetic domain control in spin-ice iridates
    Pearce, M. J.
    Goetze, K.
    Szabo, A.
    Sikkenk, T. S.
    Lees, M. R.
    Boothroyd, A. T.
    Prabhakaran, D.
    Castelnovo, C.
    Goddard, P. A.
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [5] Magnetic monopole density and antiferromagnetic domain control in spin-ice iridates
    M. J. Pearce
    K. Götze
    A. Szabó
    T. S. Sikkenk
    M. R. Lees
    A. T. Boothroyd
    D. Prabhakaran
    C. Castelnovo
    P. A. Goddard
    Nature Communications, 13
  • [6] Control of emergent magnetic monopole currents in artificial spin ice
    Arava, H.
    Vedmedenko, E. Y.
    Cui, J.
    Vijayakumar, J.
    Kleibert, A.
    Heyderman, L. J.
    PHYSICAL REVIEW B, 2020, 102 (14)
  • [7] Spectral Analysis of Topological Defects in an Artificial Spin-Ice Lattice
    Gliga, Sebastian
    Kakay, Attila
    Hertel, Riccardo
    Heinonen, Olle G.
    PHYSICAL REVIEW LETTERS, 2013, 110 (11)
  • [8] Artificial Spin-Ice and Vertex Models
    Cugliandolo, Leticia F.
    JOURNAL OF STATISTICAL PHYSICS, 2017, 167 (3-4) : 499 - 514
  • [9] Artificial Spin-Ice and Vertex Models
    Leticia F. Cugliandolo
    Journal of Statistical Physics, 2017, 167 : 499 - 514
  • [10] Magnetic multipole analysis of kagome and artificial spin-ice dipolar arrays
    Moeller, G.
    Moessner, R.
    PHYSICAL REVIEW B, 2009, 80 (14)