Control of an Ambulatory Exoskeleton with a Brain-Machine Interface for Spinal Cord Injury Gait Rehabilitation

被引:92
|
作者
Lopez-Larraz, Eduardo [1 ,2 ]
Trincado-Alonso, Fernando [3 ]
Rajasekaran, Vijaykumar [4 ]
Perez-Nombela, Soraya [3 ]
del-Ama, Antonio J. [3 ]
Aranda, Joan [4 ]
Minguez, Javier [1 ,2 ,5 ]
Gil-Agudo, Angel [3 ]
Montesano, Luis [1 ,2 ]
机构
[1] Univ Zaragoza, Dept Informat & Ingn Sistemas, Zaragoza, Spain
[2] Inst Invest Ingn Aragon I3A, Zaragoza, Spain
[3] Natl Hosp Spinal Cord Injury, Biomech & Tech Aids Unit, Toledo, Spain
[4] Univ Politecn Cataluna, Inst Bioengn Catalunya, Barcelona, Spain
[5] Bit & Brain Technol, Zaragoza, Spain
关键词
spinal cord injury (SCI); brain machine interfaces (BMI); ambulatory exoskeletons; gait rehabilitation; movement intention decoding; electroencephalography (EEG); event related desynchronization (ERD); movement related cortical potentials (MRCP); COMPUTER INTERFACE; EEG; WALKING; RELIABILITY; MOVEMENTS; INTENTION; VALIDITY; CORTEX; SCALE;
D O I
10.3389/fnins.2016.00359
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The closed-loop control of rehabilitative technologies by neural commands has shown a great potential to improve motor recovery in patients suffering from paralysis. Brain-machine interfaces (BMI) can be used as a natural control method for such technologies. BMI provides a continuous association between the brain activity and peripheral stimulation, with the potential to induce plastic changes in the nervous system. Paraplegic patients, and especially the ones with incomplete injuries, constitute a potential target population to be rehabilitated with brain-controlled robotic systems, as they may improve their gait function after the reinforcement of their spared intact neural pathways. This paper proposes a closed-loop BMI system to control an ambulatory exoskeleton without any weight or balance support for gait rehabilitation of incomplete spinal cord injury (SCI) patients. The integrated system was validated with three healthy subjects, and its viability in a clinical scenario was tested with four SCI patients. Using a cue-guided paradigm, the electroencephalographic signals of the subjects were used to decode their gait intention and to trigger the movements of the exoskeleton. We designed a protocol with a special emphasis on safety, as patients with poor balance were required to stand and walk. We continuously monitored their fatigue and exertion level, and conducted usability and user-satisfaction tests after the experiments. The results show that, for the three healthy subjects, 84.44 +/- 14.56% of the trials were correctly decoded. Three out of four patients performed at least one successful BMI session, with an average performance of 77.6 1 +/- 14.72%. The shared control strategy implemented (i.e., the exoskeleton could only move during specific periods of time) was effective in preventing unexpected movements during periods in which patients were asked to relax. On average, 55.22 +/- 16.69% and 40.45 +/- 16.98% of the trials (for healthy subjects and patients, respectively) would have suffered from unexpected activations (i.e., false positives) without the proposed control strategy. All the patients showed low exertion and fatigue levels during the performance of the experiments. This paper constitutes a proof-of-concept study to validate the feasibility of a BMI to control an ambulatory exoskeleton by patients with incomplete paraplegia (i.e., patients with good prognosis for gait rehabilitation).
引用
收藏
页数:15
相关论文
共 50 条
  • [1] A Brain-Machine Interface Architecture to Control an Upper Limb Rehabilitation Exoskeleton
    Ubeda, Andres
    Planelles, Daniel
    Hortal, Enrique
    Resquin, Francisco
    Koutsou, Aikaterini D.
    Maria Azorin, Jose
    Luis Pons, Jose
    REPLACE, REPAIR, RESTORE, RELIEVE - BRIDGING CLINICAL AND ENGINEERING SOLUTIONS IN NEUROREHABILITATION, 2014, 7 : 795 - 803
  • [3] Using a brain-machine interface to control a hybrid upper limb exoskeleton during rehabilitation of patients with neurological conditions
    Enrique Hortal
    Daniel Planelles
    Francisco Resquin
    José M. Climent
    José M. Azorín
    José L. Pons
    Journal of NeuroEngineering and Rehabilitation, 12
  • [4] Using a brain-machine interface to control a hybrid upper limb exoskeleton during rehabilitation of patients with neurological conditions
    Hortal, Enrique
    Planelles, Daniel
    Resquin, Francisco
    Climent, Jose M.
    Azorin, Jose M.
    Pons, Jose L.
    JOURNAL OF NEUROENGINEERING AND REHABILITATION, 2015, 12
  • [5] An EEG-Based Brain-Machine Interface to Control a 7-Degrees of Freedom Exoskeleton for Stroke Rehabilitation
    Sarasola-Sanz, A.
    Lopez-Larraz, E.
    Irastorza-Landa, N.
    Klein, J.
    Valencia, D.
    Belloso, A.
    Morin, F. O.
    Spuler, M.
    Birbaumer, N.
    Ramos-Murguialday, A.
    CONVERGING CLINICAL AND ENGINEERING RESEARCH ON NEUROREHABILITATION II, VOLS 1 AND 2, 2017, 15 : 1127 - 1131
  • [6] Gait rehabilitation in spinal cord injury
    Mauritz, KH
    ADVANCES IN PHYSICAL AND REHABILITATION MEDICINE, 2003, : 139 - 146
  • [7] Operation of the P300 brain-machine interface in individuals with chronic cervical spinal cord injury
    Ikegami, Shiro
    Takano, Kouji
    Saeki, Naokatsu
    Kansaku, Kenji
    NEUROSCIENCE RESEARCH, 2010, 68 : E215 - E215
  • [8] A Brain-Machine Interface Based on ERD/ERS for an Upper-Limb Exoskeleton Control
    Tang, Zhichuan
    Sun, Shouqian
    Zhang, Sanyuan
    Chen, Yumiao
    Li, Chao
    Chen, Shi
    SENSORS, 2016, 16 (12)
  • [9] Enhancing brain-machine interface (BMI) control of a hand exoskeleton using electrooculography (EOG)
    Witkowski, Matthias
    Cortese, Mario
    Cempini, Marco
    Mellinger, Juergen
    Vitiello, Nicola
    Soekadar, Surjo R.
    JOURNAL OF NEUROENGINEERING AND REHABILITATION, 2014, 11
  • [10] Brain-machine interface facilitated neurorehabilitation via spinal stimulation after spinal cord injury: Recent progress and future perspectives
    Alam, Monzurul
    Rodrigues, Willyam
    Bau Ngoc Pham
    Thakor, Nitish V.
    BRAIN RESEARCH, 2016, 1646 : 25 - 33