Design and Fabrication of Three-Dimensional Printed Scaffolds for Cancer Precision Medicine

被引:0
|
作者
Shafiee, Abbas [1 ,2 ,3 ]
机构
[1] Univ Queensland, Translat Res Inst, UQ Diamantina Inst, Brisbane, Qld, Australia
[2] Queensland Univ Technol, Inst Hlth & Biomed Innovat, Ctr Regenerat Med, Brisbane, Qld, Australia
[3] Metro North Hosp & Hlth Serv, Royal Brisbane & Womens Hosp, Brisbane, Qld, Australia
关键词
regenerative medicine; 3D printing; biocompatible materials; tissue engineering; organoids; multiomics; DEPOSITION MODELING FDM; DRUG-DELIVERY DEVICES; IN-VITRO; RELEASE; HYDROGEL; RECONSTRUCTION; ANGIOGENESIS; CHEMOTHERAPY; COCULTURE; PROFILES;
D O I
10.1089/ten.tea.2019.0278
中图分类号
Q813 [细胞工程];
学科分类号
摘要
Three-dimensional (3D)-engineered scaffolds have been widely investigated as drug delivery systems (DDS) or cancer models with the aim to develop effective cancer therapies. The in vitro and in vivo models developed via 3D printing (3DP) and tissue engineering concepts have significantly contributed to our understanding of cell-cell and cell-extracellular matrix interactions in the cancer microenvironment. Moreover, 3D tumor models were used to study the therapeutic efficiency of anticancer drugs. The present study aims to provide an overview of applying the 3DP and tissue engineering concepts for cancer studies with suggestions for future research directions. The 3DP technologies being used for the fabrication of personalized DDS have been highlighted and the potential technical approaches and challenges associated with the fused deposition modeling, the inkjet-powder bed, and stereolithography as the most promising 3DP techniques for drug delivery purposes are briefly described. Then, the advances, challenges, and future perspectives in tissue-engineered cancer models for precision medicine are discussed. Overall, future advances in this arena depend on the continuous integration of knowledge from cancer biology, biofabrication techniques, multiomics and patient data, and medical needs to develop effective treatments ultimately leading to improved clinical outcomes. Impact statement Three-dimensional printing (3DP) enables the fabrication of personalized medicines and drug delivery systems. The convergence of 3DP, tissue engineering concepts, and cancer biology could significantly improve our understanding of cancer biology and contribute to the development of new cancer therapies.
引用
收藏
页码:305 / 317
页数:13
相关论文
共 50 条
  • [1] CHARACTERIZATION OF THREE-DIMENSIONAL PRINTED COMPOSITE SCAFFOLDS PREPARED WITH DIFFERENT FABRICATION METHODS
    Szlazak, K.
    Jaroszewicz, J.
    Ostrowska, B.
    Jaroszewicz, T.
    Nabialek, M.
    Szota, M.
    Swieszkowsk, W.
    ARCHIVES OF METALLURGY AND MATERIALS, 2016, 61 (02) : 645 - 649
  • [2] Fabrication of three-dimensional scaffolds using precision extrusion deposition with an assisted cooling device
    Hamid, Q.
    Snyder, J.
    Wang, C.
    Timmer, M.
    Hammer, J.
    Guceri, S.
    Sun, W.
    BIOFABRICATION, 2011, 3 (03)
  • [3] Hybrid hierarchical fabrication of three-dimensional scaffolds
    Wei, Chuang
    Dong, Jingyan
    JOURNAL OF MANUFACTURING PROCESSES, 2014, 16 (02) : 257 - 263
  • [4] Design of three-dimensional biomimetic scaffolds
    Owen, Shawn C.
    Shoichet, Molly S.
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2010, 94A (04) : 1321 - 1331
  • [5] Design and Fabrication of Three-Dimensional Scaffolds for Tissue Engineering of Human Heart Valves
    Schaefermeier, P. K.
    Szymanski, D.
    Weiss, F.
    Fu, P.
    Lueth, T.
    Schmitz, C.
    Meiser, B. M.
    Reichart, B.
    Sodian, R.
    EUROPEAN SURGICAL RESEARCH, 2009, 42 (01) : 49 - 53
  • [6] Fabrication of three-dimensional scaffolds for heterogeneous tissue engineering
    Han, Li-Hsin
    Suri, Shalu
    Schmidt, Christine E.
    Chen, Shaochen
    BIOMEDICAL MICRODEVICES, 2010, 12 (04) : 721 - 725
  • [7] Fabrication of three-dimensional scaffolds for heterogeneous tissue engineering
    Li-Hsin Han
    Shalu Suri
    Christine E. Schmidt
    Shaochen Chen
    Biomedical Microdevices, 2010, 12 : 721 - 725
  • [8] Development of Novel Three-Dimensional Printed Scaffolds for Osteochondral Regeneration
    Holmes, Benjamin
    Zhu, Wei
    Li, Jiaoyan
    Lee, James D.
    Zhang, Lijie Grace
    TISSUE ENGINEERING PART A, 2015, 21 (1-2) : 403 - 415
  • [9] Three-Dimensional Printed Multiphase Scaffolds for Regeneration of Periodontium Complex
    Lee, Chang H.
    Hajibandeh, Jeffrey
    Suzuki, Takahiro
    Fan, Andrew
    Shang, Peng
    Mao, Jeremy J.
    TISSUE ENGINEERING PART A, 2014, 20 (7-8) : 1342 - 1351
  • [10] Three-dimensional printed polycaprolactone-microcrystalline cellulose scaffolds
    Aleman-Dominguez, Maria Elena
    Giusto, Elena
    Ortega, Zaida
    Tamaddon, Maryam
    Nizardo Benitez, Antonio
    Liu, Chaozong
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2019, 107 (03) : 521 - 528