Big Data Pipeline Scheduling and Adaptation on the Computing Continuum

被引:1
|
作者
Kimovski, Dragi [1 ]
Bauer, Christian [1 ]
Mehran, Narges [1 ]
Prodan, Radu [1 ]
机构
[1] Univ Klagenfurt, Inst Informat Technol, Klagenfurt, Austria
基金
欧盟地平线“2020”;
关键词
Scheduling; Adaptation; Computing Continuum; Fog and Edge computing; Resources management;
D O I
10.1109/COMPSAC54236.2022.00181
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The Computing Continuum, covering Cloud, Fog, and Edge systems, promises to provide on-demand resource-as-a-service for Internet applications with diverse requirements, ranging from extremely low latency to high-performance processing. However, eminent challenges in automating the resources management of Big Data pipelines across the Computing Continuum remain. The resource management and adaptation for Big Data pipelines across the Computing Continuum require significant research effort, as the current data processing pipelines are dynamic. In contrast, traditional resource management strategies are static, leading to inefficient pipeline scheduling and overly complex process deployment. To address these needs, we propose in this work a scheduling and adaptation approach implemented as a software tool to lower the technological barriers to the management of Big Data pipelines over the Computing Continuum. The approach separates the static scheduling from the run-time execution, empowering domain experts with little infrastructure and software knowledge to take an active part in the Big Data pipeline adaptation. We conduct a feasibility study using a digital healthcare use case to validate our approach. We illustrate concrete scenarios supported by demonstrating how the scheduling and adaptation tool and its implementation automate the management of the lifecycle of a remote patient monitoring, treatment, and care pipeline.
引用
收藏
页码:1153 / 1158
页数:6
相关论文
共 50 条
  • [1] Big Data Pipelines on the Computing Continuum: Tapping the Dark Data
    Roman, Dumitru
    Prodan, Radu
    Nikolov, Nikolay
    Soylu, Ahmet
    Matskin, Mihhail
    Marrella, Andrea
    Kimovski, Dragi
    Elvesaeter, Brian
    Simonet-Boulogne, Anthony
    Ledakis, Giannis
    Song, Hui
    Leotta, Francesco
    Kharlamov, Evgeny
    COMPUTER, 2022, 55 (11) : 74 - 84
  • [2] DataCloud: Enabling the Big Data Pipelines on the Computing Continuum
    Roman, Dumitru
    Nikolov, Nikolay
    Elvesaeter, Brian
    Soylu, Ahmet
    Prodan, Radu
    Kimovski, Dragi
    Marrella, Andrea
    Leotta, Francesco
    Benvenuti, Dario
    Matskin, Mihhail
    Ledakis, Giannis
    Simonet-Boulogne, Anthony
    Perales, Fernando
    Kharlamov, Evgeny
    Ulisses, Alexandre
    Solberg, Arnor
    Ceccarelli, Raffaele
    RESEARCH CHALLENGES IN INFORMATION SCIENCE (RCIS 2021), 2021, 415 : 715 - 717
  • [3] DataCloud: Enabling the Big Data Pipelines on the Computing Continuum
    Roman, Dumitru
    Nikolov, Nikolay
    Elvesaeter, Brian
    Soylu, Ahmet
    Prodan, Radu
    Kimovski, Dragi
    Marrella, Andrea
    Leotta, Francesco
    Benvenuti, Dario
    Matskin, Mihhail
    Ledakis, Giannis
    Simonet-Boulogne, Anthony
    Perales, Fernando
    Kharlamov, Evgeny
    Ulisses, Alexandre
    Solberg, Arnor
    Ceccarelli, Raffaele
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS (DASFAA 2020), PT I, 2020, 12112 : 715 - +
  • [4] A Scheduling System for Big Data Hybrid Computing Workflow
    Zhu, Yongbo
    E, Haihong
    Song, Meina
    PROCEEDINGS OF 2020 IEEE 11TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND SERVICE SCIENCE (ICSESS 2020), 2020, : 102 - 106
  • [5] Enhancement of Task Scheduling Technique of Big Data Cloud Computing
    Abed, Sa'ed
    Shubair, Duha S.
    2018 INTERNATIONAL CONFERENCE ON ADVANCES IN BIG DATA, COMPUTING AND DATA COMMUNICATION SYSTEMS (ICABCD), 2018,
  • [6] Classified scheduling algorithm of big data under cloud computing
    Zhang Y.
    International Journal of Computers and Applications, 2019, 41 (04): : 262 - 267
  • [7] FSBD: A Framework for Scheduling of Big Data Mining in Cloud Computing
    Ismail, Leila
    Masud, Mohammad M.
    Khan, Latifur
    2014 IEEE INTERNATIONAL CONGRESS ON BIG DATA (BIGDATA CONGRESS), 2014, : 513 - 520
  • [8] Asymptotic scheduling for many task computing in Big Data platforms
    Sfrent, Andrei
    Pop, Florin
    INFORMATION SCIENCES, 2015, 319 : 71 - 91
  • [9] Pipeline-Based Linear Scheduling of Big Data Streams in the Cloud
    Tantalaki, Nicoleta
    Souravlas, Stavros
    Roumeliotis, Manos
    Katsavounis, Stefanos
    IEEE ACCESS, 2020, 8 : 117182 - 117202
  • [10] Big Data Pipelines on the Computing Continuum: Ecosystem and Use Cases Overview
    Roman, Dumitru
    Nikolov, Nikolay
    Soylu, Ahmet
    Elvesaeter, Brian
    Song, Hui
    Prodan, Radu
    Kimovski, Dragi
    Marrella, Andrea
    Leotta, Francesco
    Matskin, Mihhail
    Ledakis, Giannis
    Theodosiou, Konstantinos
    Simonet-Boulogne, Anthony
    Perales, Fernando
    Kharlamov, Evgeny
    Ulisses, Alexandre
    Solberg, Arnor
    Ceccarelli, Raffaele
    26TH IEEE SYMPOSIUM ON COMPUTERS AND COMMUNICATIONS (IEEE ISCC 2021), 2021,