Fast Sparse Group Lasso

被引:0
|
作者
Ida, Yasutoshi [1 ,3 ]
Fujiwara, Yasuhiro [2 ]
Kashima, Hisashi [3 ,4 ]
机构
[1] NTT Software Innovat Ctr, Tokyo, Japan
[2] NTT Commun Sci Labs, Tokyo, Japan
[3] Kyoto Univ, Kyoto, Japan
[4] RIKEN, AIP, Wako, Saitama, Japan
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Sparse Group Lasso is a method of linear regression analysis that finds sparse parameters in terms of both feature groups and individual features. Block Coordinate Descent is a standard approach to obtain the parameters of Sparse Group Lasso, and iteratively updates the parameters for each parameter group. However, as an update of only one parameter group depends on all the parameter groups or data points, the computation cost is high when the number of the parameters or data points is large. This paper proposes a fast Block Coordinate Descent for Sparse Group Lasso. It efficiently skips the updates of the groups whose parameters must be zeros by using the parameters in one group. In addition, it preferentially updates parameters in a candidate group set, which contains groups whose parameters must not be zeros. Theoretically, our approach guarantees the same results as the original Block Coordinate Descent. Experiments show that our algorithm enhances the efficiency of the original algorithm without any loss of accuracy.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Fast block coordinate descent for sparse group lasso
    Ida, Yasutoshi
    Fujiwara, Yasuhiro
    Kashima, Hisashi
    [J]. Transactions of the Japanese Society for Artificial Intelligence, 2021, 36 (01) : 1 - 11
  • [2] A Sparse-Group Lasso
    Simon, Noah
    Friedman, Jerome
    Hastie, Trevor
    Tibshirani, Robert
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2013, 22 (02) : 231 - 245
  • [3] Classification With the Sparse Group Lasso
    Rao, Nikhil
    Nowak, Robert
    Cox, Christopher
    Rogers, Timothy
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2016, 64 (02) : 448 - 463
  • [4] A fast algorithm for group square-root Lasso based group-sparse regression
    Zhao, Chunlei
    Mao, Xingpeng
    Chen, Minqiu
    Yu, Changjun
    [J]. SIGNAL PROCESSING, 2021, 187
  • [5] An Iterative Sparse-Group Lasso
    Laria, Juan C.
    Carmen Aguilera-Morillo, M.
    Lillo, Rosa E.
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2019, 28 (03) : 722 - 731
  • [6] Sparse Damage Detection with Complex Group Lasso and Adaptive Complex Group Lasso
    Dimopoulos, Vasileios
    Desmet, Wim
    Deckers, Elke
    [J]. SENSORS, 2022, 22 (08)
  • [7] HYPERSPECTRAL UNMIXING WITH SPARSE GROUP LASSO
    Iordache, Marian-Daniel
    Bioucas-Dias, Jose M.
    Plaza, Antonio
    [J]. 2011 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2011, : 3586 - 3589
  • [8] A group lasso based sparse KNN classifier
    Zheng, Shuai
    Ding, Chris
    [J]. PATTERN RECOGNITION LETTERS, 2020, 131 : 227 - 233
  • [9] Adaptive sparse group LASSO in quantile regression
    Mendez-Civieta, Alvaro
    Aguilera-Morillo, M. Carmen
    Lillo, Rosa E.
    [J]. ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2021, 15 (03) : 547 - 573
  • [10] Asymptotic theory of the adaptive Sparse Group Lasso
    Poignard, Benjamin
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2020, 72 (01) : 297 - 328