Multi-Task Hierarchical Learning Based Network Traffic Analytics

被引:17
|
作者
Barut, Onur [1 ]
Luo, Yan [1 ]
Zhang, Tong [2 ]
Li, Weigang [2 ]
Li, Peilong [3 ]
机构
[1] Univ Massachusetts Lowell, Dept Elect & Comp Engn, Lowell, MA 01854 USA
[2] Intel Corp, Network Platforms Grp, Santa Clara, CA USA
[3] Elizabethtown Coll, Dept Comp Sci, Elizabethtown, PA 17022 USA
关键词
Network Traffic Analytics; Malware Detection; Multi-Task Learning; Hierarchical Labeling; Network Flow Features;
D O I
10.1109/ICC42927.2021.9500546
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
Classifying network traffic is the basis for important network applications. Prior research in this area has faced challenges on the availability of representative datasets, and many of the results cannot be readily reproduced. Such a problem is exacerbated by emerging data-driven machine learning based approaches. To address this issue, we present (Net)(2) database with three open datasets containing nearly 1.3M labeled flows in total, with a comprehensive list of flow features, for the research community(1). We focus on broad aspects in network traffic analysis, including both malware detection and application classification. As we continue to grow them, we expect the datasets to serve as a common ground for AI driven, reproducible research on network flow analytics. We release the datasets publicly and also introduce a Multi-Task Hierarchical Learning (MTHL) model to perform all tasks in a single model. Our results show that MTHL is capable of accurately performing multiple tasks with hierarchical labeling with a dramatic reduction in training time.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Federated Multi-task Learning with Hierarchical Attention for Sensor Data Analytics
    Chen, Yujing
    Ning, Yue
    Chai, Zheng
    Rangwala, Huzefa
    [J]. 2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [2] On Exploiting Network Topology for Hierarchical Coded Multi-Task Learning
    Hu, Haoyang
    Li, Songze
    Cheng, Minquan
    Ma, Shuai
    Shi, Yuanming
    Wu, Youlong
    [J]. IEEE TRANSACTIONS ON COMMUNICATIONS, 2024, 72 (08) : 4930 - 4944
  • [3] Hierarchical Multimodal Fusion Network with Dynamic Multi-task Learning
    Wang, Tianyi
    Chen, Shu-Ching
    [J]. 2021 IEEE 22ND INTERNATIONAL CONFERENCE ON INFORMATION REUSE AND INTEGRATION FOR DATA SCIENCE (IRI 2021), 2021, : 208 - 214
  • [4] Attention-based Multi-task Learning for Sensor Analytics
    Chen, Yujing
    Rangwala, Huzefa
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2019, : 2187 - 2196
  • [5] Multi-Task Learning Based Network Embedding
    Wang, Shanfeng
    Wang, Qixiang
    Gong, Maoguo
    [J]. FRONTIERS IN NEUROSCIENCE, 2020, 13
  • [6] Hierarchical Prompt Learning for Multi-Task Learning
    Liu, Yajing
    Lu, Yuning
    Liu, Hao
    An, Yaozu
    Xu, Zhuoran
    Yao, Zhuokun
    Zhang, Baofeng
    Xiong, Zhiwei
    Gui, Chenguang
    [J]. 2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 10888 - 10898
  • [7] Gated hierarchical multi-task learning network for judicial decision prediction
    Yao, Fanglong
    Sun, Xian
    Yu, Hongfeng
    Yang, Yang
    Zhang, Wenkai
    Fu, Kun
    [J]. NEUROCOMPUTING, 2020, 411 : 313 - 326
  • [8] Automatic Multi-task Learning System for Abnormal Network Traffic Detection
    Huang, He
    Deng, Haojiang
    Chen, Jun
    Han, Luchao
    Wang, Wei
    [J]. INTERNATIONAL JOURNAL OF EMERGING TECHNOLOGIES IN LEARNING, 2018, 13 (04): : 4 - 20
  • [9] Fast and Accurate Multi-Task Learning for Encrypted Network Traffic Classification
    Park, Jee-Tae
    Shin, Chang-Yui
    Baek, Ui-Jun
    Kim, Myung-Sup
    [J]. APPLIED SCIENCES-BASEL, 2024, 14 (07):
  • [10] Task Switching Network for Multi-task Learning
    Sun, Guolei
    Probst, Thomas
    Paudel, Danda Pani
    Popovic, Nikola
    Kanakis, Menelaos
    Patel, Jagruti
    Dai, Dengxin
    Van Gool, Luc
    [J]. 2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 8271 - 8280