Dynamic modeling and simulation of an Isobaric Adiabatic Compressed Air Energy Storage (IA-CAES) system

被引:72
|
作者
Mazloum, Youssef [1 ]
Sayah, Haytham [1 ]
Nemer, Maroun [1 ]
机构
[1] PSL Res Univ, MINES ParisTech, CES Ctr Energy Efficiency Syst CES, ZI Glaizes 5 Rue Leon Blum, F-91120 Palaiseau, France
关键词
Dymola; Dynamic modeling; Isobaric Adiabatic Compressed Air Energy; Storage (IA-CAES) system; Primary reserve; Secondary reserve;
D O I
10.1016/j.est.2017.03.006
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This paper discusses the dynamic modeling of an innovative Isobaric Adiabatic Compressed Air Energy Storage (IA-CAES) system using "Dymola". The system is a solution to reduce the effect of the intermittence of the renewable energy sources and thus improve the penetration of these sources into the energy mix. It also enables restoring the balance between supply and demand for electricity and supporting the electrical grid. The proposed system is characterized by the recovery of the compression heat and the storage of air under fixed pressure in order to improve its efficiency and its energy density. The dynamic model takes into account the mechanical inertia of the turbo-machinery as well as the thermal inertia of the heat exchangers and the storage tanks. This allows the model to evaluate the response time of the storage system and its ability to meet the power demand. Then, it allows studying the flexibility of the storage system by evaluating the durations of the transient states and the proposals to reduce these durations. The system efficiency is 53.6%. The results show that the time required to reach the steady state is about 120 s during storage periods and 382 s during production periods. In addition, the power consumed or produced by the storage system matches with the set point with maximum delay of 6 s and maximum relative error of 9%. The system is then able to reach the nominal power in few minutes (secondary reserve). Finally, a standby mode with minimal energy consumption is studied in order to reduce the durations of the transient states and then to be able to meet the primary reserve (by reaching 33% of the nominal power in 10 s). It consists in operating the compressor at 54% and the turbine at 72% of their nominal speeds. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:178 / 190
页数:13
相关论文
共 50 条
  • [1] A novel isobaric adiabatic compressed air energy storage (IA-CAES) system on the base of volatile fluid
    Chen, Long Xiang
    Xie, Mei Na
    Zhao, Pan Pan
    Wang, Feng Xiang
    Hu, Peng
    Wang, Dong Xiang
    APPLIED ENERGY, 2018, 210 : 198 - 210
  • [2] Dynamic simulation of a Re-compressed adiabatic compressed air energy storage (RA-CAES) system
    Chen, Longxiang
    Zhang, Liugan
    Yang, Huipeng
    Xie, Meina
    Ye, Kai
    ENERGY, 2022, 261
  • [3] Static and Dynamic Modeling Comparison of an Adiabatic Compressed Air Energy Storage System
    Mazloum, Youssef
    Sayah, Haytham
    Nemer, Maroun
    JOURNAL OF ENERGY RESOURCES TECHNOLOGY-TRANSACTIONS OF THE ASME, 2016, 138 (06):
  • [4] Modeling and Simulation of Compressed Air Energy Storage (CAES) System for Electromechanical Transient Analysis of Power System
    He, Lei
    Xia, Tian
    Tian, Fang
    An, Ning
    ENERGY DEVELOPMENT, PTS 1-4, 2014, 860-863 : 2486 - 2494
  • [5] Exergoeconomic analysis and optimization of a novel isobaric adiabatic compressed air energy storage system
    MINES ParisTech, PSL - Research University, CES - Center for Energy efficiency of Systems , Z.I. Les Glaises, 5 rue Léon Blum, Palaiseau
    91 120, France
    ECOS - Proc. Int. Conf. Effic., Cost, Optim., Simul. Environ. Impact Energy Syst., 1600,
  • [6] Exergoeconomic analysis and optimization of a novel isobaric adiabatic compressed air energy storage system
    Mazloum Y.
    Sayah H.
    Nemer M.
    Mazloum, Youssef (youssef.mazloum07@gmail.com), 1600, International Journal of Thermodynamics (20): : 6 - 14
  • [7] Performance analysis of a novel isobaric compressed air energy storage (CAES) system based on dual fluid
    Wei, Lijia
    Liu, Xiang
    Wu, Fengyongkang
    Li, Huaan
    Wu, Yajie
    Zhou, Hao
    JOURNAL OF ENERGY STORAGE, 2025, 108
  • [8] Comparative Analysis of Isochoric and Isobaric Adiabatic Compressed Air Energy Storage
    Pottie, Daniel
    Cardenas, Bruno
    Garvey, Seamus
    Rouse, James
    Hough, Edward
    Bagdanavicius, Audrius
    Barbour, Edward
    ENERGIES, 2023, 16 (06)
  • [9] Exergy analysis of isochoric and isobaric adiabatic compressed air energy storage
    Barbour, Edward
    Oliveira Jr, Maury M.
    Cardenas, Bruno
    Pottie, Daniel
    IET RENEWABLE POWER GENERATION, 2025, 19 (01)
  • [10] Dynamic simulation of a cooling, heating and power system based on adiabatic compressed air energy storage
    Li, Ruixiong
    Wang, Huanran
    Zhang, Haoran
    RENEWABLE ENERGY, 2019, 138 : 326 - 339