A bode sensitivity integral for linear time-periodic systems

被引:11
|
作者
Sandberg, H
Bernhardsson, B
机构
[1] Lund Univ, Dept Automat Control, SE-22100 Lund, Sweden
[2] Ericsson Mobile Platforms AB, SE-22183 Lund, Sweden
关键词
Bode sensitivity integral; linear time-periodic systems; performance limitations;
D O I
10.1109/TAC.2005.860247
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Bode's sensitivity integral is a well-known formula that quantifies some of the limitations in feedback control for linear time-invariant systems. In this note, we show that there is a similar formula for linear time-periodic systems. The harmonic transfer function is used to prove the result. We use the notion of roll-off 2, which means that the first time-varying Markov parameter is equal to zero. It then follows that the harmonic transfer function is an analytic operator and a trace class operator. These facts are used to prove the result.
引用
收藏
页码:2034 / 2039
页数:6
相关论文
共 50 条
  • [1] A bode sensitivity integral for linear time-periodic systems
    Sandberg, H
    Bernhardsson, B
    2004 43RD IEEE CONFERENCE ON DECISION AND CONTROL (CDC), VOLS 1-5, 2004, : 2644 - 2649
  • [2] A Bode-Like Integral for Discrete Linear Time-Periodic Systems
    Zhao, Yingbo
    Gupta, Vijay
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2015, 60 (09) : 2494 - 2499
  • [3] A Bode-like integral for discrete-time linear periodic systems
    Zhao, Yingbo
    Gupta, Vijay
    2014 IEEE 53RD ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2014, : 3994 - 3999
  • [4] Phase of linear time-periodic systems
    Chen, Wei
    AUTOMATICA, 2023, 151
  • [5] Tradeoffs in linear time-varying systems: an analogue of Bode's sensitivity integral
    Iglesias, PA
    AUTOMATICA, 2001, 37 (10) : 1541 - 1550
  • [6] PHASE IDENTIFICATION IN LINEAR TIME-PERIODIC SYSTEMS
    SVOBODNY, TP
    RUSSELL, DL
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1989, 34 (02) : 218 - 220
  • [7] Phase identification in linear time-periodic systems
    Svobodny, Thomas P., 1600, (34):
  • [8] Subspace Identification of Linear Time-Periodic Systems With Periodic Inputs
    Yin, Mingzhou
    Iannelli, Andrea
    Smith, Roy S.
    IEEE CONTROL SYSTEMS LETTERS, 2021, 5 (01): : 145 - 150
  • [9] Discrete-time control of linear time-periodic systems
    Kalender, S.
    Flashner, H.
    JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2008, 130 (04): : 0410091 - 0410099
  • [10] Linear Time-Periodic Systems with Exceptional Points of Degeneracy
    Kazemi, Hamidreza
    Nada, Mohamed Y.
    Mealy, Tarek
    Abdelshafy, Ahmed F.
    Capolino, Filippo
    PROCEEDINGS OF THE 2019 INTERNATIONAL CONFERENCE ON ELECTROMAGNETICS IN ADVANCED APPLICATIONS (ICEAA), 2019, : 1072 - 1073