Cosmological Scattering Equations

被引:46
|
作者
Gomez, Humberto [1 ,2 ]
Jusinskas, Renann Lipinski [3 ,4 ]
Lipstein, Arthur [1 ]
机构
[1] Univ Durham, Dept Math Sci, Durham DH1 3LE, England
[2] Univ Santiago Cali, Fac Ciencias Bas, Calle 5 62-00 Barrio Pampalinda, Cali, Valle, Colombia
[3] Czech Acad Sci, Inst Phys, Na Slovance 2, Prague 18221, Czech Republic
[4] CEICO, Na Slovance 2, Prague 18221, Czech Republic
关键词
INFLATIONARY UNIVERSE; FLATNESS; HORIZON;
D O I
10.1103/PhysRevLett.127.251604
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose a world sheet formula for tree-level correlation functions describing a scalar field with arbitrary mass and quartic self-interaction in de Sitter space, which is a simple model for inflationary cosmology. The correlation functions are located on the future boundary of the spacetime and are Fourier-transformed to momentum space. Our formula is supported on mass-deformed scattering equations involving conformal generators in momentum space and reduces to the CHY formula for phi(4) amplitudes in the flat space limit. Using the global residue theorem, we verify that it reproduces the Witten diagram expansion at four and six points, and sketch the extension to n points.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Effective field theories and cosmological scattering equations
    C. Armstrong
    H. Gomez
    R. Lipinski Jusinskas
    A. Lipstein
    J. Mei
    Journal of High Energy Physics, 2022
  • [2] Effective field theories and cosmological scattering equations
    Armstrong, C.
    Gomez, H.
    Jusinskas, R. Lipinski
    Lipstein, A.
    Mei, J.
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (08)
  • [3] Cosmological scattering equations at tree-level and one-loop
    Humberto Gomez
    Renann Lipinski Jusinskas
    Arthur Lipstein
    Journal of High Energy Physics, 2022
  • [4] Cosmological scattering equations at tree-level and one-loop
    Gomez, Humberto
    Jusinskas, Renann Lipinski
    Lipstein, Arthur
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (07)
  • [5] Quantum equations in cosmological spaces
    Taub, AH
    PHYSICAL REVIEW, 1937, 51 (06): : 512 - 525
  • [6] Benchmarking the cosmological master equations
    Thomas Colas
    Julien Grain
    Vincent Vennin
    The European Physical Journal C, 82
  • [7] Einstein's cosmological equations
    Kasner, E
    SCIENCE, 1921, 54 : 304 - 305
  • [8] Cosmological equations for a thick brane
    Mounaix, P
    Langlois, D
    PHYSICAL REVIEW D, 2002, 65 (10):
  • [9] Solutions of nonlocal cosmological equations
    Vernov, S. Yu.
    XXIX WORKSHOP ON GEOMETRIC METHODS IN PHYSICS, 2010, 1307 : 185 - 190
  • [10] A COSMOLOGICAL SOLUTION OF EINSTEIN EQUATIONS
    WESSON, PS
    JOURNAL OF MATHEMATICAL PHYSICS, 1984, 25 (11) : 3297 - 3298