On the dynamics of a parametrically excited planar tether

被引:6
|
作者
Zukovic, Miodrag [1 ]
Kovacic, Ivana [1 ]
Cartmell, Matthew P. [2 ]
机构
[1] Univ Novi Sad, Fac Tech Sci, Novi Sad 21215, Serbia
[2] Univ Sheffield, Dept Mech Engn, Sheffield, S Yorkshire, England
关键词
Tether; Parametric excitation; Orbital angular velocity; Spinning; Libration; DUMBBELL SATELLITE; NONLINEAR DYNAMICS; MOTION;
D O I
10.1016/j.cnsns.2015.02.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This study is concerned with a planar tether containing payloads in which two lumped masses are fitted whose mutual distance can be contrived to change periodically in time. This periodical variation in distance of the two masses is symmetrical and results in a time-varying coefficient of the kinetic energy, which in turn introduces parametric excitation into the equation of motion. It is assumed that the centre of mass of the symmetrical tether system moves along a circular orbit. First, the case when the orbital angular velocity is constant is examined, and it is shown numerically that three qualitatively different motions can occur. The charts produced can be used to choose parameters for the parametric excitation that yield a desired motion of the tether, such as, for example, spinning, or libration. Then, the case of a zero-valued orbital angular velocity and small oscillations is examined analytically to show how parametric excitation influences the stability of a trivial equilibrium position. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:250 / 264
页数:15
相关论文
共 50 条
  • [1] Dynamics of parametrically excited maps
    Loskutov, A.Yu.
    Rybalko, S.D.
    Prokhorov, A.K.
    [J]. Vestnik Moskovskogo Universita. Ser. 3 Fizika Astronomiya, 2002, (04): : 3 - 7
  • [2] CHAOTIC DYNAMICS OF PARAMETRICALLY EXCITED OSCILLATORS
    VAVRIV, DM
    RYABOV, VB
    CHERNYSHOV, IY
    [J]. ZHURNAL TEKHNICHESKOI FIZIKI, 1991, 61 (12): : 1 - 11
  • [3] DYNAMICS OF A PARAMETRICALLY EXCITED DOUBLE PENDULUM
    SKELDON, AC
    [J]. PHYSICA D, 1994, 75 (04): : 541 - 558
  • [4] Dynamics of a parametrically excited simple pendulum
    Depetri, Gabriela I.
    Pereira, Felipe A. C.
    Marin, Boris
    Baptista, Murilo S.
    Sartorelli, J. C.
    [J]. CHAOS, 2018, 28 (03)
  • [5] DYNAMICS OF PARAMETRICALLY EXCITED VIBRATIONS OF VEHICLES
    BOSZNAY, A
    [J]. PERIODICA POLYTECHNICA-MECHANICAL ENGINEERING, 1971, 15 (01): : 3 - &
  • [6] DYNAMICS OF DEFECTS IN PARAMETRICALLY EXCITED CAPILLARY RIPPLES
    EZERSKY, AB
    ERMOSHIN, DA
    KIYASHKO, SV
    [J]. PHYSICAL REVIEW E, 1995, 51 (05): : 4411 - 4417
  • [7] The dynamics of two parametrically excited pendula with impacts
    Quinn, DD
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2005, 15 (06): : 1975 - 1988
  • [8] LOCAL DYNAMICS OF DEFECTS IN PARAMETRICALLY EXCITED WAVES
    Falcon, Claudio
    Fauve, Stephan
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2009, 19 (10): : 3553 - 3559
  • [9] Stochastic dynamics of a parametrically base excited rotating pendulum
    Yurchenko, Daniil
    Alevras, Panagiotis
    [J]. IUTAM SYMPOSIUM ON MULTISCALE PROBLEMS IN STOCHASTIC MECHANICS, 2013, 6 : 160 - 168
  • [10] Dynamics of a nonlinear parametrically excited partial differential equation
    Newman, WI
    Rand, RH
    Newman, AL
    [J]. CHAOS, 1999, 9 (01) : 242 - 253