Referee networks and their spectral properties

被引:0
|
作者
Slanina, F
Zhang, YC
机构
[1] Acad Sci Czech Republ, Inst Phys, CZ-18221 Prague, Czech Republic
[2] Univ Fribourg, Inst Phys Theor, CH-1700 Fribourg, Switzerland
来源
ACTA PHYSICA POLONICA B | 2005年 / 36卷 / 09期
关键词
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The bipartite graph connecting products and reviewers of that product is studied empirically in the case of amazon.com. We find that the network has power-law degree distribution on the side of reviewers, while on the side of products the distribution is better fitted by stretched exponential. The spectrum of normalised adjacency matrix shows power-law tail in the density of states. Establishing the community structures by finding localised eigenstates is not straightforward as the localised and delocalised states are mixed throughout the whole support of the spectrum.
引用
收藏
页码:2797 / 2804
页数:8
相关论文
共 50 条
  • [1] Spectral properties of complex networks
    Sarkar, Camellia
    Jalan, Sarika
    CHAOS, 2018, 28 (10)
  • [2] Laplacian Spectral Properties of Complex Networks
    Chen Juan
    Lu Jun-an
    PROCEEDINGS OF THE 29TH CHINESE CONTROL CONFERENCE, 2010, : 4684 - 4689
  • [3] Spectral properties of the Laplacian of multiplex networks
    Sole-Ribalta, A.
    De Domenico, M.
    Kouvaris, N. E.
    Diaz-Guilera, A.
    Gomez, S.
    Arenas, A.
    PHYSICAL REVIEW E, 2013, 88 (03):
  • [4] Dynamical and spectral properties of complex networks
    Almendral, Juan A.
    Diaz-Guilera, Albert
    NEW JOURNAL OF PHYSICS, 2007, 9
  • [5] Spectral properties of networks with community structure
    Chauhan, Sanjeev
    Girvan, Michelle
    Ott, Edward
    PHYSICAL REVIEW E, 2009, 80 (05):
  • [6] Dimensionality reduction and spectral properties of multilayer networks
    Sanchez-Garcia, Ruben J.
    Cozzo, Emanuele
    Moreno, Yamir
    PHYSICAL REVIEW E, 2014, 89 (05):
  • [7] Structural and spectral properties of the generalized corona networks
    Rajkumar, R.
    Muthuraman, S.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2021, 32 (04):
  • [8] Random walks on jammed networks: Spectral properties
    Lechman, Jeremy B.
    Bond, Stephen D.
    Bolintineanu, Dan S.
    Grest, Gary S.
    Yarrington, Cole D.
    Silbert, Leonardo E.
    PHYSICAL REVIEW E, 2019, 100 (01)
  • [9] Universality in the spectral and eigenfunction properties of random networks
    Mendez-Bermudez, J. A.
    Alcazar-Lopez, A.
    Martinez-Mendoza, A. J.
    Rodrigues, Francisco A.
    Peron, Thomas K. D. M.
    PHYSICAL REVIEW E, 2015, 91 (03)
  • [10] Spectral properties and asymptotic periodicity of flows in networks
    Kramar, M
    Sikolya, E
    MATHEMATISCHE ZEITSCHRIFT, 2005, 249 (01) : 139 - 162