A bivariate rational cubic interpolating spline with biquadratic denominator

被引:0
|
作者
Tao, Youtian [1 ,2 ,3 ]
Wang, Dongyin [1 ]
机构
[1] Chaohu Coll, Dept Math, Chaohu 238000, Peoples R China
[2] Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Peoples R China
[3] Anhui Fuhuang Steel Struct, Chaohu 238076, Peoples R China
关键词
Bivariate rational interpolating spline; Shape parameter; Bounded property; Error estimate; Symmetry; NURBS;
D O I
10.1016/j.amc.2015.04.100
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A bivariate rational bicubic interpolating spline (BRIS) with biquadratic denominator and six shape parameters is constructed in a rectangle domain. The C-1 continuous condition of BRIS discussed. BRIS is proved to be bounded and its error is estimated. In the case of the equally spaced knots, the matrix expression and symmetry of BRIS are presented. Some properties of the basis of BRIS are given. In the end, a numerical example is given to illustrat the effect of the shape parameters on the shape of BRIS surface. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:366 / 377
页数:12
相关论文
共 50 条
  • [1] Convexity control of a bivariate rational interpolating spline surfaces
    Zhang, Yunfeng
    Duan, Qi
    Twizell, E. H.
    [J]. COMPUTERS & GRAPHICS-UK, 2007, 31 (05): : 679 - 687
  • [2] Interpolating and smoothing biquadratic spline
    [J]. Applic & Math, 5 (339):
  • [3] Point control of the interpolating curve with a rational cubic spline
    Bao, Fangxun
    Sun, Qinghua
    Duan, Qi
    [J]. JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2009, 20 (04) : 275 - 280
  • [4] Local control of interpolating rational cubic spline curves
    Duan, Qi
    Bao, Fangxun
    Du, Shitian
    Twizell, E. H.
    [J]. COMPUTER-AIDED DESIGN, 2009, 41 (11) : 825 - 829
  • [5] Positive Data Modelling using Rational Cubic Ball Spline Function with Cubic Numerator and Denominator
    Jaafar, Wan Nurhadani Wan
    Abbas, Muhammad
    Piah, Abd Rahni Mt
    Nazir, Tahir
    [J]. INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2018, 57 (01): : 128 - 144
  • [6] Bivariate cubic spline space and bivariate cubic NURBS surfaces
    Li, CJ
    Wang, RH
    [J]. GEOMETRIC MODELING AND PROCESSING 2004, PROCEEDINGS, 2004, : 115 - 123
  • [7] Shape control of a bivariate interpolating spline surface
    Duan, Qi
    Bao, Fangxun
    Zhang, Yunfeng
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2008, 85 (05) : 813 - 825
  • [8] ANOTHER APPROACH TO CUBIC INTERPOLATING SPLINE
    ROSMAN, BH
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1973, 80 (08): : 927 - 930
  • [9] Rational Cubic Spline Interpolation for Monotonic Interpolating Curve with C2 Continuity
    Karim, Samsul Ariffin Bin Abdul
    [J]. UTP-UMP SYMPOSIUM ON ENERGY SYSTEMS 2017 (SES 2017), 2017, 131
  • [10] Visual control of a bivariate rational interpolating surface
    Zhang, Yunfeng
    Zhang, Caiming
    Liu, Hui
    [J]. Journal of Computational Information Systems, 2010, 6 (05): : 1675 - 1683