Three-dimensional nonlinear Stokes-Mueller polarimetry

被引:4
|
作者
Krouglov, Serguei [1 ,2 ]
Barzda, Virginijus [1 ,2 ]
机构
[1] Univ Toronto, Dept Phys, 60 St Georges St, Toronto, ON M5S 1A7, Canada
[2] Univ Toronto Mississauga, Dept Chem & Phys Sci, 3359 Mississauga Rd N, Mississauga, ON L5L 1C6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
2ND-HARMONIC GENERATION MICROSCOPY; POLARIZATION STATES; DEPOLARIZATION; CONFORMATION; ORIENTATION; PARAMETERS; SCATTERING; FORMALISM; COLLAGEN; MATRIX;
D O I
10.1364/JOSAB.36.000541
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The formalism is developed for a three-dimensional (3D) nonlinear Stokes-Mueller polarimetry that describes a method of acquiring a complete complex valued 3D nonlinear susceptibility tensor of a material. The expressions are derived for generalized 3D linear and nonlinear Stokes vectors and the corresponding nonlinear Mueller matrix. The coherency-like Hermitian square matrix X of susceptibilities is introduced, which is derived from the nonlinear Mueller matrix. The X-matrix is characterized by the index of depolarization. Several decompositions of the X-matrix are introduced that provide a possibility to obtain nonlinear susceptibility tensors of constituting materials in the heterogeneous media. The 3D nonlinear Stokes-Mueller polarimetry formalism can be applied for three and higher wave mixing processes. The 3D polarimetric measurements can be used for structural investigations of materials, including heterogeneous biological structures. The 3D polarimetry is applicable for nonlinear microscopy with high numerical aperture objectives. (C) 2019 Optical Society of America
引用
收藏
页码:541 / 550
页数:10
相关论文
共 50 条
  • [1] Nonlinear Stokes-Mueller polarimetry
    Samim, Masood
    Krouglov, Serguei
    Barzda, Virginijus
    [J]. PHYSICAL REVIEW A, 2016, 93 (01)
  • [2] Three-photon Stokes-Mueller polarimetry
    Samim, Masood
    Krouglov, Serguei
    Barzda, Virginijus
    [J]. PHYSICAL REVIEW A, 2016, 93 (03)
  • [3] Characterization of heterogeneous media using nonlinear Stokes-Mueller polarimetry
    Samim, Masood
    Krouglov, Serguei
    James, Daniel F.
    Barzda, Virginijus
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2016, 33 (12) : 2617 - 2625
  • [4] Optimal nonlinear Stokes-Mueller polarimetry for multi-photon processes
    Li, Xiaobo
    Liu, Wei
    Goudail, Francois
    Chen, Shih-Chi
    [J]. OPTICS LETTERS, 2022, 47 (13) : 3287 - 3290
  • [5] Stokes-Mueller matrix polarimetry system for glucose sensing
    Quoc-Hung Phan
    Lo, Yu-Lung
    [J]. OPTICS AND LASERS IN ENGINEERING, 2017, 92 : 120 - 128
  • [6] Unified Stokes-Mueller polarimetry for multi-photon processes at varying wavelengths
    Wu, Jinxian
    Ma, Xiang
    Liu, Jiaming
    Lai, Chunquan
    Li, Yanqiu
    [J]. OPTICS LETTERS, 2024, 49 (12) : 3464 - 3467
  • [7] Stokes-Mueller correlation calculus
    Korotkova, Olga
    Laatikainen, Jyrki
    Friberg, Ari T.
    Setala, Tero
    [J]. POLARIZED LIGHT AND OPTICAL ANGULAR MOMENTUM FOR BIOMEDICAL DIAGNOSTICS 2022, 2022, 11963
  • [8] Stokes-Mueller matrix polarimetry technique for circular dichroism/birefringence sensing with scattering effects
    Phan, Quoc-Hung
    Lo, Yu-Lung
    [J]. JOURNAL OF BIOMEDICAL OPTICS, 2017, 22 (04)
  • [9] Quaternion algebra for Stokes-Mueller formalism
    Kuntman, Ertan
    Kuntman, Mehmet Ali
    Canillas, Adolf
    Arteag, Oriol
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2019, 36 (04) : 492 - 497
  • [10] Study of a bi-axial (KTP) crystal using double Stokes-Mueller polarimetry
    Shaji, Chitra
    Lal, S. B. Sruthil
    Sharan, Alok
    [J]. JOURNAL OF NONLINEAR OPTICAL PHYSICS & MATERIALS, 2023, 32 (03)