A Universal Method of Perovskite Surface Passivation for CsPbX3 Solar Cells with VOC over 90% of the S-Q limit

被引:50
|
作者
Guo, Zhanglin [1 ]
Zhao, Shuai [2 ]
Shibayama, Naoyuki [1 ]
Jena, Ajay Kumar [1 ]
Takei, Izuru [3 ]
Miyasaka, Tsutomu [1 ]
机构
[1] Toin Univ Yokohama, Grad Sch Engn, Aoba Ku, 1614 Kuroganecho, Yokohama, Kanagawa 2258503, Japan
[2] Chongqing Univ Technol, Coll Sci, Chongqing Key Lab Green Energy Mat Technol & Syst, Chongqing 400054, Peoples R China
[3] Mitsubishi Chem Corp, Sci & Innovat Ctr, Aoba Ku, 1000 Kamoshidacho, Yokohama, Kanagawa 2278502, Japan
关键词
CsPbX; (3); high V; (OC); indoor photovoltaics; perovskite solar cells; surface passivation; HIGHLY EFFICIENT; INORGANIC PEROVSKITE; INTERFACE;
D O I
10.1002/adfm.202207554
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In comparison to hybrid perovskite solar cells (PSCs), all-inorganic CsPbX3 PSCs suffer from larger V-OC deficits, leading to inferior efficiency. The perovskite surface defects like iodine vacancy (V-I) are the main sources of nonradiative recombination causing a V-OC deficit. Here, 2,5-thiophenedicarboxylic acid (TDCA) is used to passivate the surface V-I through the strong coordination interaction between the thiophene unit of TDCA and the undercoordinated Pb2+ of perovskite. TDCA passivation also elevates the perovskite surface valence band position, leading to a better interfacial energy alignment. Consequently, the V-OC of CsPbI2.25Br0.75 PSCs is remarkably improved from 1.36 to 1.43 V (efficiency from 15.55% to 16.72%), reaching 92% (record-high among CsPbX3 PSCs) of the Shockley-Queisser V-OC limit. This method also promotes the V-OC of CsPbI1.5Br1.5 cell from 1.42 to 1.51 V (90% of the limit) and CsPbIBr2 cell from 1.44 to 1.54 V (87% of the limit), demonstrating its universality for CsPbX3 perovskites.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Roles of Organic Molecules in Inorganic CsPbX3 Perovskite Solar Cells
    Wang, Hailiang
    Dong, Zijing
    Liu, Huicong
    Li, Weiping
    Zhu, Liqun
    Chen, Haining
    ADVANCED ENERGY MATERIALS, 2021, 11 (01)
  • [2] The development of all-inorganic CsPbX3 perovskite solar cells
    Tianqi Ma
    Shenwei Wang
    Yanwei Zhang
    Kexin Zhang
    Lixin Yi
    Journal of Materials Science, 2020, 55 : 464 - 479
  • [3] The development of all-inorganic CsPbX3 perovskite solar cells
    Ma, Tianqi
    Wang, Shenwei
    Zhang, Yanwei
    Zhang, Kexin
    Yi, Lixin
    JOURNAL OF MATERIALS SCIENCE, 2020, 55 (02) : 464 - 479
  • [4] Multidimensional CsPbX3 Inorganic Perovskite Materials: Synthesis and Solar Cells Application
    Yang, Ying
    Ma, Shupeng
    Luo, Yuan
    Lin, Feiyu
    Zhu, Liu
    Guo, Xueyi
    PROGRESS IN CHEMISTRY, 2021, 33 (05) : 779 - 801
  • [5] A review of recent progress on enhancing the stability of CsPbX3 perovskite solar cells
    Wang, Junxiao
    Wang, Guangwei
    Chen, Bing
    SUSTAINABLE ENERGY & FUELS, 2024, 8 (20): : 4667 - 4686
  • [6] All-Inorganic CsPbX3 Perovskite Solar Cells: Progress and Prospects
    Zhang, Jingru
    Hodes, Gary
    Jin, Zhiwen
    Liu, Shengzhong
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (44) : 15596 - 15618
  • [7] Strategy for perovskite solar cells approaching to S-Q limited efficiency
    Peng, Yinsheng
    Tu, Jielei
    Wang, Shurong
    Zhou, Zhineng
    Yao, Minghai
    Tang, Meiling
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2024, 57 (13)
  • [8] Surface engineering in CsPbX3 quantum dots: from materials to solar cells
    Xu, Yinyan
    Lyu, Mei
    Zhu, Jun
    MATERIALS CHEMISTRY FRONTIERS, 2024, 8 (09) : 2029 - 2055
  • [9] Durability engineering in all-inorganic CsPbX3 perovskite solar cells: strategies and challenges
    Hu, J.
    Xiong, X.
    Guan, W.
    Xiao, Z.
    Tan, C.
    Long, H.
    MATERIALS TODAY CHEMISTRY, 2022, 24
  • [10] Recent Advances in CsPbX3 Perovskite Solar Cells: Focus on Crystallization Characteristics and Controlling Strategies
    Yang, Shaomin
    Duan, Yuwei
    Liu, Zhike
    Liu, Shengzhong
    ADVANCED ENERGY MATERIALS, 2023, 13 (33)