The response of net primary productivity to climate change and its impact on hydrology in a water-limited agricultural basin

被引:6
|
作者
Ji, Shuping [1 ]
Ren, Shilong [1 ]
Li, Yanran [1 ]
Fang, Jiaohui [2 ]
Zhao, Di [3 ]
Liu, Jian [1 ]
机构
[1] Shandong Univ, Environm Res Inst, Qingdao 266237, Peoples R China
[2] Qufu Normal Univ, Sch Life Sci, Qufu 273100, Shandong, Peoples R China
[3] Chinese Acad Sci, Inst Soil Sci, Nanjing 210008, Peoples R China
基金
中国国家自然科学基金;
关键词
Climate variation; CASA; Hydrological cycle; NPP; SWAT; Vegetation dynamics; VEGETATION DYNAMICS; TIBETAN PLATEAU; SOIL-MOISTURE; TERRESTRIAL; EVAPOTRANSPIRATION; GRASSLANDS; PHENOLOGY; RUNOFF;
D O I
10.1007/s11356-021-16458-x
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Climate change has remarkably altered growing-season vegetation growth, but the impacts of vegetation variability on the regional hydrological cycle remain poorly understood. Exploring the relationships between climate change, vegetation dynamics, and hydrologic factors would contribute to the sustainable management of ecosystems. Here, we investigated the response of vegetation dynamics to climate change and its impact on hydrologic factors in a traditional agricultural basin with limited water resources in China, Nansi Lake Basin (NLB). To this end, CASA (Carnegie-Ames-Stanford Approach) model and the SWAT (Soil and Water Assessment Tool) model were applied to simulate the net primary productivity (NPP), evapotranspiration (ET), and soil water in the growing season (April-October) from 2000 to 2016. Results showed that the mean growing-season NPP (NPPGS) exhibited an ascending trend at a rate of 2.93 g C/m(2)/year during the 17-year period. The intra-annual variation of NPPGS displayed two peaks in May and July, respectively. The first peak in May was accompanied by relative deficits in soil water, which might inhibit vegetation productivity. Precipitation was the principal climatic factor controlling NPPGS dynamics in the water-limited NLB. The positive influence of temperature on NPPGS was relatively weak, and even future warming could negatively affect ecosystem productivity in the south-central regions of the NLB. Furthermore, a strongly positive relationship between NPPGS and ET was detected, suggesting that increasing NPP in the future might stimulate the rise in ET and then exacerbate drought at the watershed scale. This study provides an integrated model for a comprehensive understanding of the interaction between vegetation, climate, and hydrological cycle, and highlights the importance of water-saving agriculture for future food security.
引用
收藏
页码:10277 / 10290
页数:14
相关论文
共 50 条
  • [1] The response of net primary productivity to climate change and its impact on hydrology in a water-limited agricultural basin
    Shuping Ji
    Shilong Ren
    Yanran Li
    Jiaohui Fang
    Di Zhao
    Jian Liu
    [J]. Environmental Science and Pollution Research, 2022, 29 : 10277 - 10290
  • [2] Response of net primary productivity on climate change in the Yellow River Basin
    Rui, S
    Zhou, YY
    Liu, CM
    Yang, SQ
    [J]. IGARSS 2003: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS I - VII, PROCEEDINGS: LEARNING FROM EARTH'S SHAPES AND SIZES, 2003, : 3371 - 3373
  • [3] Delayed response of net primary productivity with climate change in the Yiluo River basin
    Tian, Zihao
    Qin, Tianling
    Wang, Huiliang
    Li, Yizhe
    Yan, Sheng
    Hou, Jun
    Li, Chenhao
    Abebe, Sintayehu A. A.
    [J]. FRONTIERS IN EARTH SCIENCE, 2023, 10
  • [4] Streamflow sensitivity analysis to climate change for a large water-limited basin
    Liang, Liqiao
    Liu, Qiang
    [J]. HYDROLOGICAL PROCESSES, 2014, 28 (04) : 1767 - 1774
  • [5] Spring photosynthetic phenology of Chinese vegetation in response to climate change and its impact on net primary productivity
    Xue, Yingying
    Bai, Xiaoyong
    Zhao, Cuiwei
    Tan, Qiu
    Li, Yangbing
    Luo, Guangjie
    Wu, Luhua
    Chen, Fei
    Li, Chaojun
    Ran, Chen
    Zhang, Sirui
    Liu, Min
    Gong, Suhua
    Xiong, Lian
    Song, Fengjiao
    Du, Chaochao
    Xiao, Biqin
    Li, Zilin
    Long, Mingkang
    [J]. AGRICULTURAL AND FOREST METEOROLOGY, 2023, 342
  • [6] Hydrology of a Water-Limited Forest under Climate Change Scenarios: The Case of the Caatinga Biome, Brazil
    Rodrigues Pinheiro, Everton Alves
    van Lier, Quirijn de Jong
    Freire Bezerra, Andre Herman
    [J]. FORESTS, 2017, 8 (03):
  • [7] Spatiotemporal Change of Net Primary Productivity and Its Response to Climate Change in Temperate Grasslands of China
    Ma, Rong
    Xia, Chunlin
    Liu, Yiwen
    Wang, Yanji
    Zhang, Jiaqi
    Shen, Xiangjin
    Lu, Xianguo
    Jiang, Ming
    [J]. FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [8] Model of the net primary productivity of terrestrial ecosystems in china and its response to climate change
    Zheng, Y. R.
    Xie, Z. X.
    Jiang, L. H.
    Chen, L. J.
    Yu, Y. J.
    Zhou, G. S.
    Shimizu, H.
    [J]. PHYTON-ANNALES REI BOTANICAE, 2005, 45 (04) : 193 - 200
  • [9] Response of grassland net primary productivity to climate change in China
    Zhao, Yuting
    Lin, Huilong
    Rong Tang
    Pu, Yanfei
    Xiong, Xiaoyu
    Nyandwi, Charles
    Nzabonakuze, Jean de Dieu
    Zhang, Yonghui
    Jin, Jiaming
    Han Tianhu
    [J]. RANGELAND JOURNAL, 2021, 43 (06): : 339 - 352
  • [10] Plant competition, temporal niches and implications for productivity and adaptability to climate change in water-limited environments
    Schwinning, Susanne
    Kelly, Colleen K.
    [J]. FUNCTIONAL ECOLOGY, 2013, 27 (04) : 886 - 897