Thermotropic liquid crystalline glycolipids

被引:154
|
作者
Goodby, J. W. [1 ]
Goertz, V.
Cowling, S. J.
Mackenzie, G.
Martin, P.
Plusquellec, D.
Benvegnu, T.
Boullanger, P.
Lafont, D.
Queneau, Y.
Chambert, S.
Fitremann, J.
机构
[1] Univ York, Dept Chem, York YO10 5DD, N Yorkshire, England
[2] Univ Hull, Dept Chem, Kingston Upon Hull HU6 7RX, N Humberside, England
[3] Univ Artois, IUT Bethune, LPCIA, CNRS,FRE 2485,Federat Chevreul FR 2638, F-62408 Bethune, France
[4] Ecole Natl Super Chim Rennes, CNRS, UMR Sci Chin Rennes 6226, Equipe Chim Organ & Supramol, F-35700 Rennes, France
[5] Univ Lyon 1, CNRS, INSA Lyon, Inst Chim & Biochim Mol & Supramol,CPE Lyon,UMR 5, F-69622 Villeurbanne, France
[6] Univ Toulouse 3, CNRS, UMR 5623, Lab IMRCP, F-31062 Toulouse, France
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1039/b708458g
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Are the liquid crystalline properties of the materials of living systems important in biological structures, functions, diseases and treatments? There is a growing consciousness that the observed lyotropic, and often thermotropic liquid crystallinity, of many biological materials that possess key biological functionality might be more than curious coincidence. Rather, as the survival of living systems depends on the flexibility and reformability of structures, it seems more likely that it is the combination of softness and structure of the liquid- crystalline state that determines the functionality of biological materials. The richest sources of liquid crystals derived from living systems are found in cell membranes, of these glycolipids are a particularly important class of components. In this critical review, we will examine the relationship between chemical structure and the self- assembling and self- organising properties of glycolipids that ultimately lead to mesophase formation.
引用
收藏
页码:1971 / 2032
页数:62
相关论文
共 50 条
  • [1] Thermotropic liquid crystalline properties of amphiphilic branched chain glycolipids
    Liao, G.
    Zewe, S. K.
    Hagerty, J.
    Hashim, R.
    Abeygunaratne, S.
    Vill, V.
    Jakli, A.
    [J]. LIQUID CRYSTALS, 2006, 33 (03) : 361 - 366
  • [2] Rheological behaviour of thermotropic and lyotropic liquid crystalline phases of Guerbet branched chain glycolipids
    Mislan, Azwa Amanina
    Foong, J. L. Nigel
    Saharin, Siti Munirah
    Zahid, N. Idayu
    [J]. FLUID PHASE EQUILIBRIA, 2019, 502
  • [3] Thermotropic liquid crystalline drugs
    Bunjes, H
    Rades, T
    [J]. JOURNAL OF PHARMACY AND PHARMACOLOGY, 2005, 57 (07) : 807 - 816
  • [4] Modification of the processing window of a thermotropic liquid crystalline polymer by blending with another thermotropic liquid crystalline polymer
    McLeod, MA
    Baird, DG
    [J]. JOURNAL OF APPLIED POLYMER SCIENCE, 1999, 73 (11) : 2209 - 2218
  • [5] Liquid crystalline thermotropic and lyotropic nanohybrids
    Saliba, Sarmenio
    Mingotaud, Christophe
    Kahn, Myrtil L.
    Marty, Jean-Daniel
    [J]. NANOSCALE, 2013, 5 (15) : 6641 - 6661
  • [6] THERMOTROPIC LIQUID-CRYSTALLINE POLYMERS
    WENDORFF, JH
    ZIMMERMANN, HJ
    [J]. ANGEWANDTE MAKROMOLEKULARE CHEMIE, 1986, 145 : 231 - 257
  • [7] Thermotropic liquid crystalline polymer fibers
    Forest, MG
    Zhou, H
    Wang, Q
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 2000, 60 (04) : 1177 - 1204
  • [8] Novel thermotropic liquid crystalline polyphosphonates
    Senthil, S
    Kannan, P
    [J]. POLYMER, 2004, 45 (11) : 3609 - 3614
  • [9] Thermotropic Liquid Crystalline Polymers.
    Rudnicka, Iwona
    Witkiewicz, Zygfryd
    [J]. Polimery/Polymers, 1986, 31 (08) : 291 - 297
  • [10] THERMOTROPIC LIQUID-CRYSTALLINE POLYSILANES
    MENESCAL, RK
    EVELAND, J
    WEST, R
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1990, 200 : 176 - POLY