Human Upper-Body Motion Capturing using Kinect

被引:0
|
作者
Kao, Wei-Chia [1 ]
Hsu, Shih-Chung [1 ]
Huang, Chung-Lin [2 ]
机构
[1] Natl Tsing Hua Univ, Dept Elect Engn, Hsinchu, Taiwan
[2] Asia Univ, Dept Appl Informat & Multimedia, Taichung, Taiwan
关键词
Motion Capturing; Action Type Recognition; Body Part Segementation; Adaboost; Random Forest;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper proposes a real-time upper human motion capturing method to estimate the positions of upper limb joints by using Kinect. For human articulated motion capturing, the body part self-occlusion is a nontrivial problem. The system consists of hybrid action type recognition, body part segmentation, and offset compensation. The hybrid action type classifier consists of Adaboost and Random Forest classifier. The major contributions of this paper are offset compensation and self-occluded joint recovery. The offset is the difference between the output and the ground truth. The offset compensation is proposed by correcting the estimated locations of the joints. For different user action type, we train an appropriate offset classifier for offset compensation. Finally, we propose a post-processing to justify the effectiveness of the offset compensation.
引用
收藏
页码:245 / 250
页数:6
相关论文
共 50 条
  • [1] Human body motion parameters capturing using kinect
    Hsu, Shih-Chung
    Huang, Jun-Yang
    Kao, Wei-Chia
    Huang, Chung-Lin
    [J]. MACHINE VISION AND APPLICATIONS, 2015, 26 (7-8) : 919 - 932
  • [2] Human body motion parameters capturing using kinect
    Shih-Chung Hsu
    Jun-Yang Huang
    Wei-Chia Kao
    Chung-Lin Huang
    [J]. Machine Vision and Applications, 2015, 26 : 919 - 932
  • [3] Comparison of Kinect and Vicon Motion Capture of Upper-Body Joint Angle Tracking
    Schlagenhauf, Franziska
    Sreeram, Siddarth
    Singhose, William
    [J]. 2018 IEEE 14TH INTERNATIONAL CONFERENCE ON CONTROL AND AUTOMATION (ICCA), 2018, : 674 - 679
  • [4] Comparison of Single-Kinect and Dual-Kinect Motion Capture of Upper-Body Joint Tracking
    Schlagenhauf, Franziska
    Sahoo, Prachi Pratyusha
    Singhose, William
    [J]. 2017 11TH ASIAN CONTROL CONFERENCE (ASCC), 2017, : 256 - 261
  • [5] A novel hybrid approach to upper-body Human Motion Capture
    Bandera, J. P.
    Marfil, R.
    Rodriguez, J. A.
    Molina-Tanco, L.
    Sandoval, F.
    [J]. 2008 IEEE MEDITERRANEAN ELECTROTECHNICAL CONFERENCE, VOLS 1 AND 2, 2008, : 355 - 360
  • [6] Robot learning of upper-body human motion by active imitation
    Bandera, J. P.
    Marfil, R.
    Molina-Tanco, L.
    Rodriguez, J. A.
    Bandera, A.
    Sandoval, F.
    [J]. 2006 6TH IEEE-RAS INTERNATIONAL CONFERENCE ON HUMANOID ROBOTS, VOLS 1 AND 2, 2006, : 314 - +
  • [7] Multi-criteria upper-body human motion adaptation
    Alexopoulos, K.
    Mavrikios, D.
    Pappas, M.
    Ntelis, E.
    Chryssolouris, G.
    [J]. INTERNATIONAL JOURNAL OF COMPUTER INTEGRATED MANUFACTURING, 2007, 20 (01) : 57 - 70
  • [8] Recovering upper-body motion using a reinitialization particle filter
    Chen, Shu
    Liang, Wenzhang
    Wu, Liang
    [J]. JOURNAL OF ELECTRONIC IMAGING, 2013, 22 (03)
  • [9] Tracking and modifying upper-body human motion data with dynamic simulation
    Zordan, VB
    Hodgins, JK
    [J]. COMPUTER ANIMATION AND SIMULATION'99, 1999, : 13 - +
  • [10] Splicing of Concurrent Upper-Body Motion Spaces with Locomotion
    Mousas, Christos
    Newbury, Paul
    Anagnostopoulos, Christos-Nikolaos
    [J]. 2013 INTERNATIONAL CONFERENCE ON VIRTUAL AND AUGMENTED REALITY IN EDUCATION, 2013, 25 : 348 - 359