Full counting statistics as the geometry of two planes

被引:7
|
作者
Sherkunov, Y. B. [1 ]
Pratap, A. [1 ]
Muzykantskii, B. [1 ]
d'Ambrumenil, N. [1 ]
机构
[1] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1103/PhysRevLett.100.196601
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Provided the measuring time is short enough, the full counting statistics (FCS) of the charge pumped across a barrier as a result of a series of voltage pulses are shown to be equivalent to the geometry of two planes. This formulation leads to the FCS without the need for the usual nonequilibrium (Keldysh) transport theory or the direct computation of the determinant of an infinite-dimensional matrix. In the particular case of the application of N Lorentzian pulses, we show the computation of the FCS reduces to the diagonalization of an NxN matrix. We also use the formulation to compute the core-hole response in the x-ray edge problem and the FCS for a square wave pulse-train for the case of low transmission.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Quantum point contacts, full counting statistics and the geometry of planes
    Sherkunov, Y. B.
    Pratap, A.
    Muzykantskii, B.
    d'Ambrumenil, N.
    [J]. OPTICS AND SPECTROSCOPY, 2010, 108 (03) : 466 - 471
  • [2] Quantum point contacts, full counting statistics and the geometry of planes
    Y. B. Sherkunov
    A. Pratap
    B. Muzykantskii
    N. d’Ambrumenil
    [J]. Optics and Spectroscopy, 2010, 108 : 466 - 471
  • [3] Full counting statistics of the two-stage Kondo effect
    Karki, D. B.
    Kiselev, Mikhail N.
    [J]. PHYSICAL REVIEW B, 2018, 98 (16)
  • [4] Full Counting Statistics of Laser Excited Rydberg Aggregates in a One-Dimensional Geometry
    Schempp, H.
    Guenter, G.
    Robert-de-Saint-Vincent, M.
    Hofmann, C. S.
    Breyel, D.
    Komnik, A.
    Schoenleber, D. W.
    Gaerttner, M.
    Evers, J.
    Whitlock, S.
    Weidemueller, M.
    [J]. PHYSICAL REVIEW LETTERS, 2014, 112 (01)
  • [5] Full counting statistics of Majorana interferometers
    Struebi, Gregory
    Belzig, Wolfgang
    Schmidt, Thomas L.
    Bruder, Christoph
    [J]. PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2015, 74 : 489 - 495
  • [6] Full counting statistics in quantum contacts
    Belzig, W
    [J]. CFN Lectures on Functional Nanostructures, Vol 1, 2005, 658 : 123 - 143
  • [7] Full counting statistics for the Kondo dot
    Komnik, A
    Gogolin, AO
    [J]. PHYSICAL REVIEW LETTERS, 2005, 94 (21)
  • [8] Full Counting Statistics of Andreev Tunneling
    Maisi, Ville F.
    Kambly, Dania
    Flindt, Christian
    Pekola, Jukka P.
    [J]. PHYSICAL REVIEW LETTERS, 2014, 112 (03)
  • [9] Full counting statistics and field theory
    Nazarov, Yuli V.
    [J]. ANNALEN DER PHYSIK, 2007, 16 (10-11) : 720 - 735
  • [10] Full counting statistics of interacting electrons
    Bagrets, D. A.
    Utsumi, Y.
    Golubev, D. S.
    Schoen, Gerd
    [J]. FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2006, 54 (8-10): : 917 - 938