Circuit Quantum Electrodynamics in Hyperbolic Space: From Photon Bound States to Frustrated Spin Models

被引:34
|
作者
Bienias, Przemyslaw [1 ,2 ]
Boettcher, Igor [3 ,4 ]
Belyansky, Ron [1 ,2 ]
Kollar, Alicia J. [1 ]
Gorshkov, Alexey, V [1 ,2 ]
机构
[1] Univ Maryland, Joint Quantum Inst, College Pk, MD 20742 USA
[2] Univ Maryland, Joint Ctr Quantum Informat & Comp Sci, NIST, College Pk, MD 20742 USA
[3] Univ Alberta, Dept Phys, Edmonton, AB T6G 2E1, Canada
[4] Univ Alberta, Theoret Phys Inst, Edmonton, AB T6G 2E1, Canada
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
SPECTRAL THEORY; RANDOM-WALKS; SIMULATION; LIGHT;
D O I
10.1103/PhysRevLett.128.013601
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Circuit quantum electrodynamics is one of the most promising platforms for efficient quantum simulation and computation. In recent groundbreaking experiments, the immense flexibility of superconducting microwave resonators was utilized to realize hyperbolic lattices that emulate quantum physics in negatively curved space. Here we investigate experimentally feasible settings in which a few superconducting qubits are coupled to a bath of photons evolving on the hyperbolic lattice. We compare our numerical results for finite lattices with analytical results for continuous hyperbolic space on the Poincare disk. We find good agreement between the two descriptions in the long-wavelength regime. We show that photon-qubit bound states have a curvature-limited size. We propose to use a qubit as a local probe of the hyperbolic bath, for example, by measuring the relaxation dynamics of the qubit. We find that, although the boundary effects strongly impact the photonic density of states, the spectral density is well described by the continuum theory. We show that interactions between qubits are mediated by photons propagating along geodesics. We demonstrate that the photonic bath can give rise to geometrically frustrated hyperbolic quantum spin models with finite-range or exponentially decaying interaction.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Quantum simulation of hyperbolic space with circuit quantum electrodynamics: From graphs to geometry
    Boettcher, Igor
    Bienias, Przemyslaw
    Belyansky, Ron
    Kollar, Alicia J.
    Gorshkov, Alexey V.
    PHYSICAL REVIEW A, 2020, 102 (03)
  • [2] Digital Quantum Simulation of Spin Models with Circuit Quantum Electrodynamics
    Salathe, Y.
    Mondal, M.
    Oppliger, M.
    Heinsoo, J.
    Kurpiers, P.
    Potocnik, A.
    Mezzacapo, A.
    Heras, U. Las
    Lamata, L.
    Solano, E.
    Filipp, S.
    Wallraff, A.
    PHYSICAL REVIEW X, 2015, 5 (02):
  • [3] Hyperbolic lattices in circuit quantum electrodynamics
    Alicia J. Kollár
    Mattias Fitzpatrick
    Andrew A. Houck
    Nature, 2019, 571 : 45 - 50
  • [4] Hyperbolic lattices in circuit quantum electrodynamics
    Kollar, Alicia J.
    Fitzpatrick, Mattias
    Houck, Andrew A.
    NATURE, 2019, 571 (7763) : 45 - +
  • [5] BOUND STATES IN QUANTUM ELECTRODYNAMICS
    ROY, TC
    ZEITSCHRIFT FUR PHYSIK, 1960, 158 (02): : 142 - 144
  • [6] Photon Blockade in Circuit Quantum Electrodynamics
    Hoffman, Anthony J.
    Srinivasan, Srikanth
    Spietz, Lafe
    Aumentado, Jose
    Houck, Andrew A.
    2010 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO) AND QUANTUM ELECTRONICS AND LASER SCIENCE CONFERENCE (QELS), 2010,
  • [7] Circuit quantum electrodynamics with a spin qubit
    K. D. Petersson
    L. W. McFaul
    M. D. Schroer
    M. Jung
    J. M. Taylor
    A. A. Houck
    J. R. Petta
    Nature, 2012, 490 : 380 - 383
  • [8] Circuit quantum electrodynamics with a spin qubit
    Petersson, K. D.
    McFaul, L. W.
    Schroer, M. D.
    Jung, M.
    Taylor, J. M.
    Houck, A. A.
    Petta, J. R.
    NATURE, 2012, 490 (7420) : 380 - 383
  • [9] Thermal excitation of multi-photon dressed states in circuit quantum electrodynamics
    Fink, J. M.
    Baur, M.
    Bianchetti, R.
    Filipp, S.
    Goeppl, M.
    Leek, P. J.
    Steffen, L.
    Blais, A.
    Wallraff, A.
    PHYSICA SCRIPTA, 2009, T137
  • [10] Bound States in the Quantum Scalar Electrodynamics
    G. V. Efimov
    Few-Body Systems, 2010, 47 : 137 - 155