Automated Segmentation of Cortical Grey Matter from T1-Weighted MRI Images

被引:0
|
作者
Johnson, Eileanoir B. [1 ]
Scahill, Rachael I. [1 ]
Tabrizi, Sarah J. [1 ]
机构
[1] UCL Inst Neurol, Huntingtons Dis Res Ctr, London, England
来源
关键词
Neuroscience; Issue; 143; MRI; structural; SPM; FSL; FreeSurfer; ANTs; MALP-EM; quality control; grey matter; SURFACE-BASED ANALYSIS; THICKNESS;
D O I
10.3791/58198
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Within neuroimaging research, a number of recent studies have discussed the impact of between-study differences in volumetric findings that are thought to result from the use of different segmentation tools to generate brain volumes. Here, processing pipelines for seven automated tools that can be used to segment grey matter within the brain are presented. The protocol provides an initial step for researchers aiming to find the most accurate method for generating grey matter volumes from T1-weighted MRI scans. Steps to undertake detailed visual quality control are also included in the manuscript. This protocol covers a range of potential segmentation tools and encourages users to compare the performance of these tools within a subset of their data before selecting one to apply to a full cohort. Furthermore, the protocol may be further generalized to the segmentation of other brain regions.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Segmentation of cervical Lymph Nodes in T1-weighted MRI Images
    Jung, Florian
    Hilpert, Julia
    Wesarg, Stefan
    BILDVERARBEITUNG FUR DIE MEDIZIN 2015: ALGORITHMEN - SYSTEME - ANWENDUNGEN, 2015, : 353 - 358
  • [2] Deep Learning Framework for Liver Segmentation from T1-Weighted MRI Images
    Hossain, Md. Sakib Abrar
    Gul, Sidra
    Chowdhury, Muhammad E. H.
    Khan, Muhammad Salman
    Sumon, Md. Shaheenur Islam
    Bhuiyan, Enamul Haque
    Khandakar, Amith
    Hossain, Maqsud
    Sadique, Abdus
    Al-Hashimi, Israa
    Ayari, Mohamed Arselene
    Mahmud, Sakib
    Alqahtani, Abdulrahman
    Kang, Dae-Ki
    SENSORS, 2023, 23 (21)
  • [3] On the Fallacy of Quantitative Segmentation for T1-Weighted MRI
    Plassard, Andrew J.
    Harrigan, Robert L.
    Newton, Allen T.
    Rane, Swati
    Pallavaram, Srivatsan
    D'Haese, Pierre F.
    Dawant, Benoit M.
    Claassen, Daniel O.
    Landman, Bennett A.
    MEDICAL IMAGING 2016: IMAGE PROCESSING, 2016, 9784
  • [4] Automatic segmentation of white matter lesions in T1-weighted brain MR images
    Yu, SY
    Pham, DL
    Shen, D
    Herskovits, EH
    Resnick, SM
    Davatzikos, C
    2002 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, PROCEEDINGS, 2002, : 253 - 256
  • [5] An Enhanced Fuzzy Segmentation Framework for extracting white matter from T1-weighted MR images
    Vinurajkumar, S.
    Anandhavelu, S.
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2022, 71
  • [6] A comparison of automated lesion segmentation approaches for chronic stroke T1-weighted MRI data
    Ito, Kaori L.
    Kim, Hosung
    Liew, Sook-Lei
    HUMAN BRAIN MAPPING, 2019, 40 (16) : 4669 - 4685
  • [7] Automatic Muscle and Fat Segmentation in the Thigh From T1-Weighted MRI
    Orgiu, Sara
    Lafortuna, Claudio L.
    Rastelli, Fabio
    Cadioli, Marcello
    Falini, Andrea
    Rizzo, Giovanna
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2016, 43 (03) : 601 - 610
  • [8] A benchmark for hypothalamus segmentation on T1-weighted MR images
    Rodrigues, Livia
    Ribeiro Rezende, Thiago Junqueira
    Wertheimer, Guilherme
    Santos, Yves
    Franca, Marcondes
    Rittner, Leticia
    NEUROIMAGE, 2022, 264
  • [9] Pelvic Bone Segmentation on T1-Weighted MR Images
    Novak, G.
    Nyiri, G.
    Hwang, K.
    Dong, L.
    Fidrich, M.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2011, 81 (02): : S819 - S819
  • [10] Fully automated segmentation of the cervical cord from T1-weighted MRI using PropSeg: Application to multiple sclerosis
    Yiannakas, Marios C.
    Mustafa, Ahmed M.
    De Leener, Benjamin
    Kearney, Hugh
    Tur, Carmen
    Altmann, Daniel R.
    De Angelis, Floriana
    Plantone, Domenico
    Ciccarelli, Olga
    Miller, David H.
    Cohen-Adad, Julien
    Wheeler-Kingshott, Claudia A. M. Gandini
    NEUROIMAGE-CLINICAL, 2016, 10 : 71 - 77