Response of traveling waves to transient inputs in neural fields

被引:14
|
作者
Kilpatrick, Zachary P. [1 ]
Ermentrout, Bard [1 ]
机构
[1] Univ Pittsburgh, Dept Math, Pittsburgh, PA 15260 USA
来源
PHYSICAL REVIEW E | 2012年 / 85卷 / 02期
基金
美国国家科学基金会;
关键词
VISUAL HALLUCINATIONS; PROPAGATION FAILURE; MATHEMATICAL-THEORY; NEURONAL NETWORKS; PATTERN-FORMATION; DYNAMICS; CORTEX; EXISTENCE; FRONTS; PULSES;
D O I
10.1103/PhysRevE.85.021910
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We analyze the effects of transient stimulation on traveling waves in neural field equations. Neural fields are modeled as integro-differential equations whose convolution term represents the synaptic connections of a spatially extended neuronal network. The adjoint of the linearized wave equation can be used to identify how a particular input will shift the location of a traveling wave. This wave response function is analogous to the phase response curve of limit cycle oscillators. For traveling fronts in an excitatory network, the sign of the shift depends solely on the sign of the transient input. A complementary estimate of the effective shift is derived using an equation for the time-dependent speed of the perturbed front. Traveling pulses are analyzed in an asymmetric lateral inhibitory network and they can be advanced or delayed, depending on the position of spatially localized transient inputs. We also develop bounds on the amplitude of transient input necessary to terminate traveling pulses, based on the global bifurcation structure of the neural field.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] A Multiscale Analysis of Traveling Waves in Stochastic Neural Fields
    Lang, Eva
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2016, 15 (03): : 1581 - 1614
  • [2] Traveling waves in neural models
    Turner, REL
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2005, 7 (Suppl 2) : S289 - S298
  • [3] Traveling Waves in Neural Models
    R. E. L. Turner
    Journal of Mathematical Fluid Mechanics, 2005, 7 : S289 - S298
  • [4] Traveling waves in cellular neural networks
    Hsu, CH
    Lin, SS
    Shen, WX
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1999, 9 (07): : 1307 - 1319
  • [5] TRANSIENT FLOW IN GAS NETWORKS: TRAVELING WAVES
    Gugat, Martin
    Wintergerst, David
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND COMPUTER SCIENCE, 2018, 28 (02) : 341 - 348
  • [6] TRANSIENT RADIATION OF TRAVELING WAVES BY WIRE ANTENNAS
    PODOSENOV, SA
    SVEKIS, YG
    SOKOLOV, AA
    IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, 1995, 37 (03) : 367 - 383
  • [7] VELOCITY OF TRANSIENT TRAVELING WAVES ON THE BASILAR MEMBRANE
    ELPERN, BS
    SCHUBERT, ED
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1959, 31 (01): : 124 - 124
  • [8] Traveling Waves and the Processing of Weakly Tuned Inputs in a Cortical Network Module
    Rani Ben-Yishai
    David Hansel
    Haim Sompolinsky
    Journal of Computational Neuroscience, 1997, 4 : 57 - 77
  • [9] Traveling waves and the processing of weakly tuned inputs in a cortical network module
    BenYishai, R
    Hansel, D
    Sompolinsky, H
    JOURNAL OF COMPUTATIONAL NEUROSCIENCE, 1997, 4 (01) : 57 - 77
  • [10] RESPONSE OF BURIED STRUCTURES TO TRAVELING WAVES
    HWANG, RN
    LYSMER, J
    JOURNAL OF THE GEOTECHNICAL ENGINEERING DIVISION-ASCE, 1981, 107 (02): : 183 - 200