Optimization of nanocavity field enhancement using two-dimensional plasmonic photonic crystals

被引:5
|
作者
Tao Xing [1 ]
Dong ZhenChao [1 ]
机构
[1] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Peoples R China
来源
CHINESE SCIENCE BULLETIN | 2012年 / 57卷 / 01期
基金
中国国家自然科学基金;
关键词
plasmonic photonic crystal; finite-difference time-domain method; localized surface plasmon; Purcell factor; RAMAN-SCATTERING; SPECTROSCOPY; MOLECULES; EMISSION;
D O I
10.1007/s11434-011-4832-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We have investigated the influence of Ag nanorod radius (r) on the resonant modes of a two-dimensional plasmonic photonic crystal (PPC) with dipole sources embedded into the central vacancy area, using finite-difference time-domain methods. Both the localized surface plasmon (LSP) mode of individual Ag nanorods and the resonant cavity mode of PPC are found to vary as a function of r. The resonant cavity mode is strongly enhanced as r is increased, while the LSP signal will eventually become no longer discernable in the Fourier spectrum of the time-evolved field. An optimized condition for the nanocavity field enhancement is found for a given PPC periodicity (e.g. d = 375 nm) with the critical nanorod radius r (c) = d/3. At this point the resonant cavity mode has the strongest field enhancement, best field confinement and largest Q-factor. We attribute this to competition between the blocking of cavity confined light to radiate out when the cavity resonant frequency falls inside the opened photonic stopband as r reaches r (c), and the transfer of cavity mode energy to inter-particle plasmons when r is further increased.
引用
收藏
页码:77 / 82
页数:6
相关论文
共 50 条
  • [1] Optimization of nanocavity field enhancement using two-dimensional plasmonic photonic crystals
    TAO Xing&DONG ZhenChao * Hefei National Laboratory for Physical Sciences at the Microscale
    [J]. Science Bulletin, 2012, (01) : 77 - 82
  • [2] Fabricating two-dimensional plasmonic photonic crystals for the modulation of nanocavity plasmon mode
    Meng, Qiushi
    Zhang, Yao
    Cai, Hongbing
    Liao, Yuan
    Zhang, Yang
    Wang, Xiaoping
    Okamoto, Takayuki
    Dong, Zhenchao
    [J]. NANOSCALE, 2016, 8 (45) : 18855 - 18859
  • [3] Near-field optical microscopy of two-dimensional photonic and plasmonic crystals
    Smolyaninov, II
    Atia, W
    Davis, CC
    [J]. PHYSICAL REVIEW B, 1999, 59 (03): : 2454 - 2460
  • [4] Plasmonic photonic bandgaps robust to disorder in two-dimensional plasmonic crystals
    Vasic, Borislav
    Gajic, Rados
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2012, 29 (10) : 2964 - 2970
  • [5] Enhancement of solar cell efficiency using two-dimensional photonic crystals
    Postigo, P. A.
    Kaldirim, M.
    Prieto, I.
    Martinez, L. J.
    Dotor, M. L.
    Galli, M.
    Andreani, L. C.
    [J]. PHOTONIC CRYSTAL MATERIALS AND DEVICES IX, 2010, 7713
  • [6] Two-dimensional photonic bandgap nanocavity lasers
    Hwang, JK
    Ryu, HY
    Lee, YH
    [J]. OPTOELECTRONIC INTEGRATED CIRCUITS IV, 2000, 3950 : 202 - 209
  • [7] Extraordinary emission from two-dimensional plasmonic-photonic crystals
    Puscasu, I
    Pralle, M
    McNeal, M
    Daly, J
    Greenwald, A
    Johnson, E
    Biswas, R
    Ding, CG
    [J]. JOURNAL OF APPLIED PHYSICS, 2005, 98 (01)
  • [8] Two-Dimensional Photonic Crystals
    Chen, Cheng
    Dong, Zhiqiang
    Chen, Haowen
    Chen, Yang
    Zhu, Zhigang
    Shih, Weiheng
    [J]. PROGRESS IN CHEMISTRY, 2018, 30 (06) : 775 - 784
  • [9] Two-dimensional photonic crystals
    Mogilevtsev, DS
    Kilin, SY
    [J]. PHYSICS OF LOW-DIMENSIONAL STRUCTURES, 1999, 1-2 : 207 - 216
  • [10] High-Q photonic nanocavity in a two-dimensional photonic crystal
    Yoshihiro Akahane
    Takashi Asano
    Bong-Shik Song
    Susumu Noda
    [J]. Nature, 2003, 425 : 944 - 947