Iron scraps enhance simultaneous nitrogen and phosphorus removal in subsurface flow constructed wetlands

被引:81
|
作者
Ma, Yuhui [1 ]
Dai, Wanqing [2 ]
Zheng, Peiru [2 ]
Zheng, Xiangyong [2 ]
He, Shengbing [1 ,3 ]
Zhao, Min [2 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Environm Sci & Engn, Shanghai 200240, Peoples R China
[2] Wenzhou Univ, Sch Life & Environm Sci, Wenzhou 325000, Peoples R China
[3] Shanghai Inst Pollut Control & Ecol Secur, Shanghai 200092, Peoples R China
基金
中国国家自然科学基金;
关键词
Nitrogen removal; Phosphorus removal; Iron scraps; Iron cycle; Constructed wetlands; ZERO-VALENT IRON; WASTE-WATER TREATMENT; INTERMITTENT AERATION; BACTERIAL COMMUNITIES; NITRATE REDUCTION; SP NOV; OXIDATION; DENITRIFICATION; TEMPERATURE; SUBSTRATE;
D O I
10.1016/j.jhazmat.2020.122612
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In rural domestic wastewater treatment using subsurface constructed wetland system (SFCWs), the lack of a carbon source for denitrification and limited phosphorus uptake are responsible for low removal of nitrogen and phosphorus, and a suitable substrate is therefore, necessary. Iron is an important component in nitrogen and phosphorus biogeochemical cycles. Few studies have addressed the application of iron in SFCWs. Therefore, we constructed SFCWs that used iron scraps as a substrate. Enhanced nitrification, denitrification and removal of phosphorus were observed. The large proportion of nitrite-oxidising bacteria present in CWs with iron scraps (CW-T) compared to gravel beds indicated that iron may enhance ammonium (NH4+ ) oxidation. More nitrate-reducing bacteria related to Fe and autotrophic denitrifying bacteria were discovered in the back zone of CW-T and these enhanced denitrification process. Phosphate (PO43-) reacted with ferrous ion (Fe2+) and ferric ion (Fe3+ ) to generate the precipitant. Moreover, Fe3+ reacted with water to generate iron oxide (FeOOH) that had a large adsorption capacity for phosphorus. After six months of operation, average NH4+-N, total nitrogen and total phosphorus removal rates were 66.98 +/- 13.37 %, 71.26 +/- 13.57 % and 93.54 +/- 6.64 %, respectively. Iron scraps can potentially be utilised in SFCWs in rural domestic wastewater treatment.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Simultaneous denitrification and iron-phosphorus precipitation driven by plant biomass coupled with iron scraps in subsurface flow constructed wetlands
    Gu, Xushun
    Peng, Yuanyuan
    Sun, Shanshan
    He, Shengbing
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2022, 322
  • [2] Intermittent aeration strategy to enhance organics and nitrogen removal in subsurface flow constructed wetlands
    Fan, Jinlin
    Zhang, Bo
    Zhang, Jian
    Huu Hao Ngo
    Guo, Wenshan
    Liu, Feifei
    Guo, Yeye
    Wu, Haiming
    BIORESOURCE TECHNOLOGY, 2013, 141 : 117 - 122
  • [3] Pyrite coupled with steel slag to enhance simultaneous nitrogen and phosphorus removal in constructed wetlands
    Liu, Ying
    Liu, Xiao-Hui
    Wang, Hong-Cheng
    Li, Zhi-Ling
    Liang, Bin
    Sun, Yi-Lu
    Cheng, Hao-Yi
    Lu, Shao-Yong
    Wang, Ai-Jie
    CHEMICAL ENGINEERING JOURNAL, 2023, 470
  • [4] Effects of different substrates on nitrogen and phosphorus removal in horizontal subsurface flow constructed wetlands
    Xu, Rui
    Zhang, Yong
    Liu, Rong
    Cao, Yun
    Wang, Guoxiang
    Ji, Lingchen
    Xu, Yifan
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2019, 26 (16) : 16229 - 16238
  • [5] Effects of different substrates on nitrogen and phosphorus removal in horizontal subsurface flow constructed wetlands
    Rui Xu
    Yong Zhang
    Rong Liu
    Yun Cao
    Guoxiang Wang
    Lingchen Ji
    Yifan Xu
    Environmental Science and Pollution Research, 2019, 26 : 16229 - 16238
  • [6] Numerical simulation of phosphorus removal in horizontal subsurface flow constructed wetlands
    Liolios, Konstantinos A.
    Moutsopoulos, Konstantinos N.
    Tsihrintzis, Vassilios A.
    DESALINATION AND WATER TREATMENT, 2015, 56 (05) : 1282 - 1290
  • [7] Media selection for sustainable phosphorus removal in subsurface flow constructed wetlands
    Brix, H
    Arias, CA
    del Bubba, M
    WATER SCIENCE AND TECHNOLOGY, 2001, 44 (11-12) : 47 - 54
  • [8] A study of ferric-carbon micro-electrolysis process to enhance nitrogen and phosphorus removal efficiency in subsurface flow constructed wetlands
    Shen, Youhao
    Zhuang, Linlan
    Zhang, Jian
    Fan, Jinlin
    Yang, Ting
    Sun, Shuo
    CHEMICAL ENGINEERING JOURNAL, 2019, 359 : 706 - 712
  • [9] Constructed wetlands with subsurface flow for nitrogen removal from tile drainage
    Vymazal, Jan
    Sochacki, Adam
    Fucik, Petr
    Seres, Michal
    Kaplicka, Marketa
    Hnatkova, Tereza
    Chen, Zhongbing
    ECOLOGICAL ENGINEERING, 2020, 155
  • [10] Synergistic Removal of Nitrogen and Phosphorus in Constructed Wetlands Enhanced by Sponge Iron
    Shen, Yiwei
    Hu, Meijia
    Xu, Yishen
    Tao, Mengni
    Guan, Lin
    Kong, Yu
    Cao, Shiwei
    Jing, Zhaoqian
    WATER, 2024, 16 (10)