On the Cα-convergence of the Solution of the Chern-Ricci Flow on Elliptic Surfaces

被引:2
|
作者
Kawamura, Masaya [1 ]
机构
[1] Tokyo Metropolitan Univ, Dept Math & Informat Sci, 1-1 Minami Osawa, Hachioji, Tokyo 1920397, Japan
关键词
COMPLEX ANALYTIC SURFACES;
D O I
10.3836/tjm/1459367266
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We will study the Chem-Ricci flow on non-Kahler properly elliptic surfaces. These surfaces are compact complex surfaces whose first Beth number is odd, Kodaira dimension is equal to 1 and admit an elliptic fibration to a smooth compact curve. We will show that a solution of the Chern-Ricci flow converges in C-alpha-topology on these elliptic surfaces by choosing a special initial metric.
引用
收藏
页码:215 / 224
页数:10
相关论文
共 50 条
  • [1] Collapsing of the Chern-Ricci flow on elliptic surfaces
    Tosatti, Valentino
    Weinkove, Ben
    Yang, Xiaokui
    MATHEMATISCHE ANNALEN, 2015, 362 (3-4) : 1223 - 1271
  • [2] Inoue surfaces and the Chern-Ricci flow
    Fang, Shouwen
    Tosatti, Valentino
    Weinkove, Ben
    Zheng, Tao
    JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 271 (11) : 3162 - 3185
  • [3] The Chern-Ricci flow on complex surfaces
    Tosatti, Valentino
    Weinkove, Ben
    COMPOSITIO MATHEMATICA, 2013, 149 (12) : 2101 - 2138
  • [4] The Chern-Ricci flow on primary Hopf surfaces
    Edwards, Gregory
    MATHEMATISCHE ZEITSCHRIFT, 2021, 299 (3-4) : 1689 - 1702
  • [5] The Chern-Ricci flow
    Tosatti V.
    Weinkove B.
    Atti della Accademia Nazionale dei Lincei, Classe di Scienze Fisiche, Matematiche e Naturali, Rendiconti Lincei Matematica e Applicazioni, 2022, 33 (01): : 73 - 107
  • [6] Weak solutions of the Chern-Ricci flow on compact complex surfaces
    Nie, Xiaolan
    MATHEMATICAL RESEARCH LETTERS, 2017, 24 (06) : 1819 - 1844
  • [7] Collapsing of the Chern–Ricci flow on elliptic surfaces
    Valentino Tosatti
    Ben Weinkove
    Xiaokui Yang
    Mathematische Annalen, 2015, 362 : 1223 - 1271
  • [8] An Almost Complex Chern-Ricci Flow
    Zheng, Tao
    JOURNAL OF GEOMETRIC ANALYSIS, 2018, 28 (03) : 2129 - 2165
  • [9] The Chern-Ricci flow and holomorphic bisectional curvature
    Yang XiaoKui
    SCIENCE CHINA-MATHEMATICS, 2016, 59 (11) : 2199 - 2204
  • [10] THE BEHAVIOR OF THE CHERN SCALAR CURVATURE UNDER THE CHERN-RICCI FLOW
    Gill, Matthew
    Smith, Daniel
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 143 (11) : 4875 - 4883