Extremal metrics on fibrations

被引:7
|
作者
Dervan, Ruadhai [1 ,2 ]
Sektnan, Lars Martin [3 ]
机构
[1] Ctr Math Sci, Dept Pure Math & Math Stat, Wilberforce Rd, Cambridge CB3 0WB, England
[2] Ecole Polytech, Ctr Math Laurent Schwartz, F-91120 Palaiseau, France
[3] Univ Quebec Montreal, Dept Math, Case Postale 8888,Succursale Ctr Ville, Montreal, PQ H3C 3P8, Canada
关键词
32Q15 (primary); 32Q26; 32Q20 (secondary); KAHLER-EINSTEIN METRICS; SCALAR CURVATURE EQUATIONS; RELATIVE K-STABILITY; MANIFOLDS; SPACE;
D O I
10.1112/plms.12297
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Consider a fibred compact Kahler manifold X endowed with a relatively ample line bundle, such that each fibre admits a constant scalar curvature Kahler (cscK) metric and has discrete automorphism group. Assuming the base of the fibration admits a twisted extremal metric where the twisting form is a certain Weil-Petersson type metric, we prove that X admits an extremal metric for polarisations making the fibres small. Thus, X admits a cscK metric if and only if the Futaki invariant vanishes. This extends a result of Fine who proved this result when the base admits no continuous automorphisms. As consequences of our techniques, we obtain analogues for maps of various fundamental results for varieties: if a map admits a twisted cscK metric, then its automorphism group is reductive; a twisted extremal metric is invariant under a maximal compact subgroup of the automorphism group of the map; there is a geometric interpretation for uniqueness of twisted extremal metrics on maps.
引用
收藏
页码:587 / 616
页数:30
相关论文
共 50 条
  • [1] Extremal trigonal fibrations on rational surfaces
    Gong, Cheng
    Kitagawa, Shinya
    Lu, Jun
    [J]. JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2021, 73 (02) : 505 - 524
  • [2] EXTREMAL METRICS ON BLOWUPS
    Arezzo, Claudio
    Pacard, Frank
    Singer, Michael
    [J]. DUKE MATHEMATICAL JOURNAL, 2011, 157 (01) : 1 - 51
  • [3] On the existence of extremal metrics
    Xu, XW
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 1996, 174 (02) : 555 - 568
  • [4] Extremal metrics and modulus
    Anic, I
    Mateljevic, M
    Saric, D
    [J]. CZECHOSLOVAK MATHEMATICAL JOURNAL, 2002, 52 (02) : 225 - 235
  • [5] Extremal Kahler metrics
    Szekelyhidi, Gabor
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS (ICM 2014), VOL II, 2014, : 1017 - 1032
  • [6] Extremal metrics and modulus
    I. Anić
    M. Mateljević
    D. Šarić
    [J]. Czechoslovak Mathematical Journal, 2002, 52 : 225 - 235
  • [7] Quantization of symplectic fibrations and canonical metrics
    Ioos, Louis
    Polterovich, Leonid
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS, 2023, 34 (08)
  • [8] Two extremal elliptic fibrations on Jacobian Kummer surfaces
    Jonghae Keum
    [J]. manuscripta mathematica, 1997, 94 : 543 - 543
  • [9] Two extremal elliptic fibrations on Jacobian Kummer surfaces
    Keum, JH
    [J]. MANUSCRIPTA MATHEMATICA, 1996, 91 (03) : 369 - 377
  • [10] Relative stability and extremal metrics
    Mabuchi, Toshiki
    [J]. JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2014, 66 (02) : 535 - 563