A new algorithm of improved two-Dimensional Principal Component Analysis face recognition

被引:0
|
作者
Lu, Zhenyu [1 ]
Fu, You [2 ]
Qiu, Yunan [2 ]
Lu, Bingjian [2 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Jiangsu Collaborat Innovat Ctr Atmospher Environm, Nanjing 210044, Jiangsu, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, Sch Elect & Informat Engn, Nanjing 210044, Jiangsu, Peoples R China
关键词
2DPCA; face recognition; perceptual hash; multi-angle; improved principal component analysis method;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The traditional two-Dimensional Principal Component Analysis(2DPCA) only extracts the in-line features of data of face image, the direction of feature extraction is relatively simple, and the feature extraction in other directions is not considered. In order to extract the features of the image from multiple angles and provide more abundant information for recognition, a new method of 2DPCA face recognition is proposed. The new algorithm first self-corrects the face image, at the same time, it extracts the low frequency information of the image, and then it uses the Perceptual hash technique to obtain the 'fingerprint' of the image. Then, the new algorithm will rotate multi-angle images from the self-corrected face images and extract the features separately to get multi-angle feature information. Finally, the training sample pictures are classified again for each category, and the images of similar expressions or features are classified to retain the special expressions or features. The numerical experiments in the ORL human face databases show that the improved algorithm is superior to the traditional 2DPCA algorithm.
引用
收藏
页码:106 / 111
页数:6
相关论文
共 50 条
  • [1] AN IMPROVED FRACTIONAL TWO-DIMENSIONAL PRINCIPAL COMPONENT ANALYSIS FOR FACE RECOGNITION
    Alsaqre, Falah
    [J]. JORDANIAN JOURNAL OF COMPUTERS AND INFORMATION TECHNOLOGY, 2022, 8 (01): : 87 - 97
  • [2] Algorithms of Two-dimensional principal component analysis for face recognition
    Kukharev, Georgy Alexsandrovich
    Schegoleva, Nadegda Lvovna
    [J]. Computer Optics, 2010, 34 (04) : 545 - 551
  • [3] Face recognition with DWT and two-dimensional principal component analysis
    Yin Hongtao
    Fu Ping
    Meng Shengwei
    [J]. ICEMI 2007: PROCEEDINGS OF 2007 8TH INTERNATIONAL CONFERENCE ON ELECTRONIC MEASUREMENT & INSTRUMENTS, VOL I, 2007, : 86 - 89
  • [4] Application of two-dimensional principal component analysis for recognition of face images
    Shchegoleva N.L.
    Kukharev G.A.
    [J]. Pattern Recognition and Image Analysis, 2010, 20 (04) : 513 - 527
  • [5] Symmetry based two-dimensional principal component analysis for face recognition
    Ding, Mingyong
    Lu, Congde
    Lin, Yunsong
    Tong, Ling
    [J]. ADVANCES IN NEURAL NETWORKS - ISNN 2007, PT 2, PROCEEDINGS, 2007, 4492 : 1048 - +
  • [6] Advanced variations of two-dimensional principal component analysis for face recognition
    Zhao, Meixiang
    Jia, Zhigang
    Cai, Yunfeng
    Chen, Xiao
    Gong, Dunwei
    [J]. NEUROCOMPUTING, 2021, 452 : 653 - 664
  • [7] Face recognition using two-dimensional nonnegative principal component analysis
    Ma, Peng
    Yang, Dan
    Ge, Yongxin
    Zhang, Xiaohong
    Qu, Ying
    [J]. JOURNAL OF ELECTRONIC IMAGING, 2012, 21 (03)
  • [8] Fuzzy Kernel Two-Dimensional Principal Component Analysis for Face Recognition
    Zeng, J. X.
    Chen, P.
    Tian, J. Q.
    Fu, X.
    [J]. PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND INDUSTRIAL ENGINEERING (AIIE 2015), 2015, 123 : 357 - 360
  • [9] Face recognition based on wavelet transform, two-dimensional principal component analysis and independent component analysis
    Gan, Jun-Ying
    Li, Chun-Zhi
    [J]. Moshi Shibie yu Rengong Zhineng/Pattern Recognition and Artificial Intelligence, 2007, 20 (03): : 377 - 381
  • [10] Probabilistic two-dimensional principal component analysis and its mixture model for face recognition
    Wang, Haixian
    Chen, Sibao
    Hu, Zilan
    Luo, Bin
    [J]. NEURAL COMPUTING & APPLICATIONS, 2008, 17 (5-6): : 541 - 547