Machine learning prediction of thermodynamic and mechanical properties of multicomponent Fe-Cr-based alloys

被引:14
|
作者
Mukhamedov, B. O. [1 ]
Karavaev, K., V [2 ]
Abrikosov, I. A. [1 ]
机构
[1] Linkoping Univ, Dept Phys Chem & Biol IFM, Theoret Phys Div, SE-58183 Linkoping, Sweden
[2] Natl Univ Sci & Technol MISIS, Mat Modeling & Dev Lab, Moscow 119049, Russia
基金
瑞典研究理事会;
关键词
PHASE PREDICTION; KANTHAL AF; OXIDATION; SCALE; TEMPERATURE;
D O I
10.1103/PhysRevMaterials.5.104407
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We apply machine learning algorithms to optimize thermodynamic and elastic properties of multicomponent Fe-Cr alloys with additions of Ni, Mo, Al, W, V, and Nb. The target properties are mixing enthalpy, Young's elastic modulus, and the ratio between shear and bulk moduli, which is often used as a phenomenological criterion for a material's ductility. We thoroughly analyze the descriptors that provide the robust performance of the machine learning models. Next, the iterative active learning method is used for the optimization of the chemical composition to simultaneously improve both thermodynamic stability and the elastic properties of Fe-Cr-based alloys. As a result, we predict compositions of thermodynamically stable alloys with improved mechanical properties, demonstrating the high potential of data-driven computational design in the field of materials for nuclear energy applications.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Theoretical description of thermodynamic and mechanical properties of multicomponent bcc Fe-Cr-based alloys
    Ponomareva, A., V
    Belov, M. P.
    Smirnova, E. A.
    Karavaev, K., V
    Sidnov, K.
    Mukhamedov, B. O.
    Abrikosov, I. A.
    PHYSICAL REVIEW MATERIALS, 2020, 4 (09)
  • [2] Magnetic properties of Fe-Cr-based nanocrystalline alloys
    Randrianantoandro, N
    SlawskaWaniewska, A
    Greneche, JM
    JOURNAL OF PHYSICS-CONDENSED MATTER, 1997, 9 (47) : 10485 - 10500
  • [3] Magnetic interactions in Fe-Cr-based nanocrystalline alloys
    Randrianantoandro, N
    SlawskaWaniewska, A
    Greneche, JM
    PHYSICAL REVIEW B, 1997, 56 (17): : 10797 - 10800
  • [4] Determination of the mechanical properties of nanocrystalline Fe-Cr-based thermal spray coatings
    Bürkle, G
    Banhart, F
    Sagel, A
    Wanke, C
    Croopnick, G
    Fecht, HJ
    METASTABLE, MECHANICALLY ALLOYED AND NANOCRYSTALLINE MATERIALS, 2002, 386-3 : 571 - 576
  • [5] Corrosion resistance of Fe-Cr-based amorphous alloys: An overview
    Souza, C. A. C.
    Ribeiro, D. V.
    Kiminami, C. S.
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 2016, 442 : 56 - 66
  • [6] Prediction of mechanical properties of high entropy alloys based on machine learning
    Gao, Tinghong
    Wu, Qingqing
    Chen, Lei
    Liang, Yongchao
    Han, Yunjie
    PHYSICA SCRIPTA, 2025, 100 (04)
  • [7] Corrosion Properties of the Fe-Cr-Based Soft Magnetic Alloys Fabricated by Metal Injection Molding
    Hamataka, Yuki
    Hatakeyama, Masahiko
    Osada, Toshiko
    Miura, Hideshi
    Iwatsu, Osamu
    Tanaka, Shigeo
    Sunada, Satoshi
    MATERIALS TRANSACTIONS, 2016, 57 (12) : 2110 - 2115
  • [8] Prediction of mechanical properties of biomedical magnesium alloys based on ensemble machine learning
    Hou, Haobing
    Wang, Jianfeng
    Ye, Li
    Zhu, Shijie
    Wang, Liguo
    Guan, Shaokang
    MATERIALS LETTERS, 2023, 348
  • [9] Machine learning-based glass formation prediction in multicomponent alloys
    Liu, Xiaodi
    Li, Xin
    He, Quanfeng
    Liang, Dandan
    Zhou, Ziqing
    Ma, Jiang
    Yang, Yong
    Shen, Jun
    Shen, Jun (junshen@szu.edu.cn), 1600, Acta Materialia Inc (201): : 182 - 190
  • [10] Machine learning-based glass formation prediction in multicomponent alloys
    Liu, Xiaodi
    Li, Xin
    He, Quanfeng
    Liang, Dandan
    Zhou, Ziqing
    Ma, Jiang
    Yang, Yong
    Shen, Jun
    ACTA MATERIALIA, 2020, 201 : 182 - 190