p-FEM for, finite deformation powder compaction

被引:19
|
作者
Heisserer, Ulrich [1 ]
Hartmann, Stefan [2 ]
Duester, Alexander [1 ]
Bier, Wolfgang [2 ]
Yosibash, Zohar [3 ]
Rank, Ernst [1 ]
机构
[1] Tech Univ Munich, Fak Bauingenieur & Vermessungswesen, Lehrstuhl Bauinformat, D-8000 Munich, Germany
[2] Univ Kassel, Inst Mech, D-3500 Kassel, Germany
[3] Ben Gurion Univ Negev, Pearlstone Ctr Aeronaut Studies, Dept Mech Engn, IL-84105 Beer Sheva, Israel
关键词
p-version FEM; finite strain; viscoplasticity; axisymmetry; die-compaction; cold isostatic pressing; metal powder compaction;
D O I
10.1016/j.cma.2007.09.001
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The simulation of powder compaction problems (die-compaction and cold isostatic pressing) is considered herein by an implicit high-order (p-version) finite element method. In this class of problems use is made of a finite strain viscoplasticity model with evolution equations for internal variables developed for the highly compressible behavior in powder compaction processes. The classical approach of implicit finite elements applies the combination of Backward-Euler integration scheme and the Multilevel-Newton algorithm to solve the system of differential-algebraic equations resulting from. the space-discretized weak formulation by Means of p-version finite elements. This approach requires on Gauss-point level a robust stress-algorithm. The challenging investigations are the incorporation of the applied highly non-linear ear. viscoplasticity model into a p-version finite element formulation using follower load applications. Several axisymmetric numerical examples show the feasibility and good performance of this p-version approach. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:727 / 740
页数:14
相关论文
共 50 条
  • [1] Axisymmetric pressure boundary loading for finite deformation analysis using p-FEM
    Yosibash, Zohar
    Hartmann, Stefan
    Heisserer, Ulrich
    Duester, Alexander
    Rank, Ernst
    Szanto, Mordechai
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2007, 196 (07) : 1261 - 1277
  • [2] p-FEM applied to finite isotropic hyperelastic bodies
    Düster, A
    Hartmann, S
    Rank, E
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2003, 192 (47-48) : 5147 - 5166
  • [3] Generalized p-FEM in homogenization
    A.M. Matache
    I. Babuška
    C. Schwab
    Numerische Mathematik, 2000, 86 : 319 - 375
  • [4] Generalized p-FEM in homogenization
    Matache, AM
    Babuska, I
    Schwab, C
    NUMERISCHE MATHEMATIK, 2000, 86 (02) : 319 - 375
  • [5] Homogenization via p-FEM for problems with microstructure
    Matache, AM
    Schwab, C
    APPLIED NUMERICAL MATHEMATICS, 2000, 33 (1-4) : 43 - 59
  • [6] Dynamic Load Balancing Strategies for Hierarchical p-FEM Solvers
    Mundani, Ralf-Peter
    Duester, Alexander
    Knezevic, Jovana
    Niggl, Andreas
    Rank, Ernst
    RECENT ADVANCES IN PARALLEL VIRTUAL MACHINE AND MESSAGE PASSING INTERFACE, PROCEEDINGS, 2009, 5759 : 305 - +
  • [7] Locally refined p-FEM modeling of patch repaired plates
    Ahn, Jae S.
    Basu, Prodyot K.
    COMPOSITE STRUCTURES, 2011, 93 (07) : 1704 - 1716
  • [8] Improvements for some condition number estimates for preconditioned system in p-FEM
    Beuchler, Sven
    Braess, Dietrich
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2006, 13 (07) : 573 - 588
  • [9] An adaptive p-FEM for three-dimensional concrete aggregate models
    Guo, Ruiqi
    Xiao, Yingxiong
    INTERNATIONAL JOURNAL OF MODELING SIMULATION AND SCIENTIFIC COMPUTING, 2020, 11 (01)
  • [10] Multigrid solver or the inner problem in domain decomposition methods or P-FEM
    Beuchler, S
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 40 (03) : 928 - 944