Dirichlet p-Laplacian eigenvalues and Cheeger constants on symmetric graphs

被引:13
|
作者
Hua, Bobo [1 ]
Wang, Lili [2 ]
机构
[1] Fudan Univ, Sch Math Sci, LMNS, Shanghai 200433, Peoples R China
[2] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
基金
中国博士后科学基金;
关键词
Dirichlet p-Laplacian; Eigenvalucs; Cheeger constants; Symmetric graphs; 1ST EIGENVALUE; LOWER BOUNDS; 1-LAPLACIAN; INEQUALITIES; MANIFOLDS; EQUATIONS; SPECTRUM; CUT;
D O I
10.1016/j.aim.2020.106997
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study eigenvalues and eigenfunctions of p-Laplacians with Dirichlet boundary condition on graphs. We characterize the first eigenfunction (and the maximum eigenfunction for a bipartite graph) via the sign condition. By the uniqueness of the first eigenfunction of p-Laplacian, as p -> 1, we identify the Cheeger constant of a symmetric graph with that of the quotient graph. By this approach, we calculate various Cheeger constants of spherically symmetric graphs. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:34
相关论文
共 50 条