Unavoidable cycle lengths in graphs

被引:7
|
作者
Verstraete, J [1 ]
机构
[1] Univ Waterloo, Dept Combinat & Optimaz, Waterloo, ON N2L 3G1, Canada
关键词
unavoidable cycle lengths; longest cycle; k-connected; binomial distribution;
D O I
10.1002/jgt.20072
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An old conjecture of Erdos states that there exists an absolute constant c and a set S of density zero such that every graph of average degree at least c contains a cycle of length in S. In this paper, we prove this conjecture by showing that every graph of average degree at least ten contains a cycle of length in a prescribed set S satisfying | S ∧ {1, 2,..., n}| = O(n(0.99)). © 2005 Wiley Periodicals, Inc.
引用
下载
收藏
页码:151 / 167
页数:17
相关论文
共 50 条
  • [1] ON THE DISTRIBUTION OF CYCLE LENGTHS IN GRAPHS
    GYARFAS, A
    KOMLOS, J
    SZEMEREDI, E
    JOURNAL OF GRAPH THEORY, 1984, 8 (04) : 441 - 462
  • [2] Cycle lengths in planar graphs
    Verstraëte, J
    UTILITAS MATHEMATICA, 2006, 69 : 109 - 117
  • [3] A note on cycle lengths in graphs
    Gould, RJ
    Haxell, PE
    Scott, AD
    GRAPHS AND COMBINATORICS, 2002, 18 (03) : 491 - 498
  • [4] Distribution of cycle lengths in graphs
    Fan, GH
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2002, 84 (02) : 187 - 202
  • [5] Cycle Lengths in Expanding Graphs
    Limor Friedman
    Michael Krivelevich
    Combinatorica, 2021, 41 : 53 - 74
  • [6] Cycle lengths in sparse graphs
    Benny Sudakov
    Jacques Verstraëte
    Combinatorica, 2008, 28 : 357 - 372
  • [7] A Note on Cycle Lengths in Graphs
    R.J. Gould
    P.E. Haxell
    A.D. Scott
    Graphs and Combinatorics, 2002, 18 : 491 - 498
  • [8] Cycle Lengths in Expanding Graphs
    Friedman, Limor
    Krivelevich, Michael
    COMBINATORICA, 2021, 41 (01) : 53 - 74
  • [9] Cycle lengths in sparse graphs
    Sudakov, Benny
    Verstraetet, Jacques
    COMBINATORICA, 2008, 28 (03) : 357 - 372
  • [10] Cycle lengths in randomly perturbed graphs
    Aigner-Horev, Elad
    Hefetz, Dan
    Krivelevich, Michael
    RANDOM STRUCTURES & ALGORITHMS, 2023, 63 (04) : 867 - 884