Seasonal Propagation Characteristics from Meteorological to Hydrological Drought and Their Dynamics in the Headstreams of the Tarim River Basin

被引:8
|
作者
Wang, Zhixia [1 ]
Huang, Shengzhi [1 ]
Huang, Qiang [1 ]
Duan, Weili [2 ,3 ]
Leng, Guoyong [4 ]
Guo, Yi [1 ]
Zheng, Xudong [1 ]
Nie, Mingqiu [1 ]
Han, Zhiming [1 ]
Dong, Haixia [1 ]
Peng, Jian [5 ,6 ]
机构
[1] Xian Univ Technol, Sch Water Resources & Hydropower, State Key Lab Ecohydraul Northwest Arid Reg China, Xian, Peoples R China
[2] Chinese Acad Sci, Xinjiang Inst Ecol & Geog, State Key Lab Desert & Oasis Ecol, Urumqi, Peoples R China
[3] Univ Chinese Acad Sci, Beijing, Peoples R China
[4] Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Key Lab Water Cycle & Related Land Surface Proc, Beijing, Peoples R China
[5] UFZ Helmholtz Ctr Environm Res, Dept Remote Sensing, Leipzig, Germany
[6] Univ Leipzig, Remote Sensing Ctr Earth Syst Res, Leipzig, Germany
基金
国家重点研发计划;
关键词
Drought; Dynamics; Climate variability; Bayesian methods; Seasonal variability; STANDARDIZED PRECIPITATION INDEX; DIFFERENT TIME SCALES; CLIMATE-CHANGE; XINJIANG; CHINA; WATER; RUNOFF; RISK; CLASSIFICATION; SIMULATIONS;
D O I
10.1175/JHM-D-21-0250.1
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
In the propagation from meteorological to hydrological drought, there are time-lag and step-abrupt effects, quantified in terms of propagation time and threshold, which play an important role in hydrological drought early warning. However, seasonal drought propagation time and threshold and their dynamics as well as the corresponding driving mechanism remain unknown in a changing environment. To this end, the standardized precipitation index (SPI) and standardized runoff index (SRI) were used respectively to characterize meteorological and hydrological droughts and to determine the optimal propagation time. Then, a seasonal drought propagation framework based on Bayesian network was proposed for calculating the drought propagation threshold with SPI. Finally, the seasonal dynamics and preliminary attribution of propagation characteristics were investigated based on the random forest model and correlation analysis. The results show that 1) relatively short propagation time (less than 9 months) and large propagation threshold (from -3.18 to -1.19) can be observed in the Toxkan River basins (subbasin II), especially for spring, showing low drought resistance; 2) drought propagation time shows an extended trend in most seasons, while the drought propagation threshold displays an increasing trend in autumn and winter in the Aksu River basin (subbasins I-II), and the opposite characteristics in the Hotan and Yarkant River basins (subbasins III-V); and 3) the impacts of precipitation, temperature, potential evapotranspiration, and soil moisture on drought propagation dynamics are inconsistent across subbasins and seasons, noting that reservoirs serve as a buffer to regulate the propagation from meteorological to hydrological droughts. The findings of this study can provide scientific guidelines for watershed hydrological drought early warning and risk management. Significance StatementThe aim of this study is to better understand how the delayed and step-abrupt effects of propagation from meteorological drought to hydrological drought can be characterized through propagation time and threshold. These response indicators determine the resistance of a catchment to hydrological droughts and meteorological droughts. They can help water resources management agencies to mitigate hydrological droughts by taking measures such as water storage, increasing revenue, and reducing expenditure. The findings of this study can provide scientific guidelines for watershed hydrological drought early warning and risk management.
引用
收藏
页码:1487 / 1506
页数:20
相关论文
共 50 条
  • [1] Characteristics of Propagation From Meteorological Drought to Hydrological Drought in the Pearl River Basin
    Zhou, Zhaoqiang
    Shi, Haiyun
    Fu, Qiang
    Ding, Yibo
    Li, Tianxiao
    Wang, Yao
    Liu, Suning
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2021, 126 (04)
  • [2] Propagation law from meteorological drought to hydrological drought in the Tarim River Basin under the impact of human activities
    Xue L.
    Bai Q.
    Liu Y.
    Water Resources Protection, 2023, 39 (01) : 57 - 62and72
  • [3] Future propagation characteristics of meteorological drought to hydrological drought in the Yellow River basin
    Huang, Xingyi
    Yang, Xiaoli
    Wu, Fan
    Zhang, Jiale
    Journal of Hydrology, 2025, 649
  • [4] Characteristics and risk analysis of drought propagation from meteorological drought to hydrological drought in Luanhe River Basin
    Zhang X.
    Xu Y.
    Hao F.
    Hao Z.
    Shuili Xuebao/Journal of Hydraulic Engineering, 2022, 53 (02): : 165 - 175
  • [5] Probability-Based Propagation Characteristics from Meteorological to Hydrological Drought and Their Dynamics in the Wei River Basin, China
    Du, Meng
    Liu, Yongjia
    Huang, Shengzhi
    Zheng, Hao
    Huang, Qiang
    WATER, 2024, 16 (14)
  • [6] The changing characteristics of propagation time from meteorological drought to hydrological drought in the Yangtze River basin, China
    Zhang, Xiaoyu
    She, Dunxian
    Xia, Jun
    Zhang, Liping
    Deng, Cuiling
    Liu, Zheqiong
    ATMOSPHERIC RESEARCH, 2023, 290
  • [7] Spatio-temporal characteristics and propagation relationship of meteorological drought and hydrological drought in the Yellow River Basin
    Zheng L.
    Liu Y.
    Ren L.
    Zhu Y.
    Yin H.
    Yuan F.
    Zhang L.
    Water Resources Protection, 2022, 38 (03) : 87 - 95
  • [8] The changing characteristics of propagation time from meteorological drought to hydrological drought in a semi-arid river basin in India
    Gupta, Ajay
    Jain, Manoj Kumar
    Pandey, Rajendra Prasad
    HYDROLOGICAL PROCESSES, 2024, 38 (08)
  • [9] Propagation dynamics and causes of hydrological drought in response to meteorological drought at seasonal timescales
    Ma, Lan
    Huang, Qiang
    Huang, Shengzhi
    Liu, Dengfeng
    Leng, Guoyong
    Wang, Lu
    Li, Pei
    HYDROLOGY RESEARCH, 2022, 53 (01): : 193 - 205
  • [10] Propagation from Meteorological to Hydrological Drought and Its Influencing Factors in the Huaihe River Basin
    Wang, Jingshu
    Wang, Wen
    Cheng, Hui
    Wang, Hongjie
    Zhu, Ye
    WATER, 2021, 13 (14)