Predicting Clopidogrel Response Using DNA Samples Linked to an Electronic Health Record

被引:79
|
作者
Delaney, J. T. [1 ]
Ramirez, A. H. [1 ]
Bowton, E. [2 ]
Pulley, J. M. [3 ]
Basford, M. A. [2 ]
Schildcrout, J. S. [4 ]
Shi, Y. [4 ]
Zink, R. [5 ]
Oetjens, M. [6 ]
Xu, H. [5 ]
Cleator, J. H. [1 ]
Jahangir, E. [1 ]
Ritchie, M. D. [7 ]
Masys, D. R. [5 ]
Roden, D. M. [1 ,8 ]
Crawford, D. C. [6 ,9 ]
Denny, J. C. [1 ,5 ]
机构
[1] Vanderbilt Univ, Dept Med, Nashville, TN 37203 USA
[2] Vanderbilt Univ, Res Off, Nashville, TN USA
[3] Vanderbilt Univ, Med Adm, Nashville, TN USA
[4] Vanderbilt Univ, Dept Biostat, Nashville, TN USA
[5] Vanderbilt Univ, Dept Biomed Informat, Nashville, TN USA
[6] Vanderbilt Univ, Ctr Human Genet Res, Nashville, TN USA
[7] Penn State Univ, Dept Biol & Biochem, University Pk, PA 16802 USA
[8] Vanderbilt Univ, Dept Pharmacol, Nashville, TN USA
[9] Vanderbilt Univ, Dept Mol Physiol & Biophys, Nashville, TN 37232 USA
基金
美国国家卫生研究院;
关键词
PERCUTANEOUS CORONARY INTERVENTION; OF-FUNCTION POLYMORPHISM; ST-SEGMENT ELEVATION; STENT THROMBOSIS; PLATELET REACTIVITY; MYOCARDIAL-INFARCTION; CARDIOVASCULAR EVENTS; ANTIPLATELET THERAPY; GENE POLYMORPHISMS; MAJOR DETERMINANT;
D O I
10.1038/clpt.2011.221
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Variants in ABCB1 and CYP2C19 have been identified as predictors of cardiac events during clopidogrel therapy initiated after myocardial infarction (MI) or percutaneous coronary intervention (PCI). In addition, PON1 has recently been associated with stent thrombosis. The reported effects of these variants have not yet been replicated in a real-world setting. We used BioVU, the Vanderbilt DNA repository linked to de-identified electronic health records (EHRs), to find data on patients who were on clopidogrel treatment after an MI and/or a PCI; among these, we identified those who had experienced one or more recurrent cardiac events while on treatment (cases, n = 225) and those who had not experienced any cardiac event while on treatment (controls, n = 468). We found that CYP2C19*2 (hazard ratio (HR) 1.54,95% confidence interval (CI) 1.16-2.06, P=0.003) and ABCB1 (HR 1.28,95% CI 1.04-1.57, P=0.018), but not PON1 (HR 0.91, 95% CI 0.73-1.12, P=0.370), were associated with recurrent events. In this population, genetic signals for clopidogrel resistance in ABCB1 and CYP2C19 were replicated, supporting the use of EHRs for pharmacogenomic studies. Our data do not show an association between PON1 and recurrent cardiovascular events.
引用
收藏
页码:257 / 263
页数:7
相关论文
共 50 条
  • [1] Predicting warfarin dosage in European-Americans and African-Americans using DNA samples linked to an electronic health record
    Ramirez, Andrea H.
    Shi, Yaping
    Schildcrout, Jonathan S.
    Delaney, Jessica T.
    Xu, Hua
    Oetjens, Matthew T.
    Zuvich, Rebecca L.
    Basford, Melissa A.
    Bowton, Erica
    Jiang, Min
    Speltz, Peter
    Zink, Raquel
    Cowan, James
    Pulley, Jill M.
    Ritchie, Marylyn D.
    Masys, Daniel R.
    Roden, Dan M.
    Crawford, Dana C.
    Denny, Joshua C.
    PHARMACOGENOMICS, 2012, 13 (04) : 407 - 418
  • [2] PREDICTING BACTEREMIA USING ELECTRONIC HEALTH RECORD DATA
    Lonjers, Zachary
    Bhavani, Sivasubramanium
    Carey, Kyle
    Gilbert, Emily
    Afshar, Majid
    Churpek, Matthew
    CHEST, 2019, 156 (04) : 1607A - 1607A
  • [3] Predicting Mammogram Screening Follow Through with Electronic Health Record and Geographically Linked Data
    Davis, Matthew
    Simpson, Kit
    Lenert, Leslie A.
    Diaz, Vanessa
    Alekseyenko, Alexander V.
    CANCER RESEARCH COMMUNICATIONS, 2023, 3 (10): : 2126 - 2132
  • [5] Predicting food insecurity in a pediatric population using the electronic health record
    Rigdon, Joseph
    Montez, Kimberly
    Palakshappa, Deepak
    Brown, Callie
    Downs, Stephen M.
    Albertini, Laurie W.
    Taxter, Alysha
    JOURNAL OF CLINICAL AND TRANSLATIONAL SCIENCE, 2024, 8 (01)
  • [6] A Verbal Electronic Checklist for Timeouts Linked to the Electronic Health Record
    Uppot, Raul N.
    McCarthy, Colin J.
    Haynes, Alex B.
    Burk, Kristine S.
    Mills, Theresa
    Trifanov, Dimitry S.
    Koo, Timothy K.
    Salazar, Gloria M.
    Halpern, Elkan F.
    Yu, Alvin Y.
    JOURNAL OF THE AMERICAN COLLEGE OF RADIOLOGY, 2017, 14 (10) : 1322 - 1325
  • [7] Predicting Severe Sepsis from the Electronic Health Record Using Machine Learning
    Gallant, S.
    Culliton, P.
    Levinson, M.
    Ehresman, A.
    Wherry, J.
    Steingrub, J.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2018, 197
  • [8] Predicting Diabetes (DM) Diagnoses Dates Using the Electronic Health Record (EHR)
    Lenoir, Kristin M.
    Wagenknecht, Lynne E.
    Divers, Jasmin
    Casanova, Ramon
    Lawrence, Jean M.
    Dabelea, Dana
    Pihoker, Catherine
    Saydah, Sharon
    Liese, Angela D.
    Standiford, Debra
    Wells, Brian J.
    DIABETES, 2020, 69
  • [9] Predicting Hospitalizations From Electronic Health Record Data
    Morawski, Kyle
    Dvorkis, Yoni
    Monsen, Craig B.
    AMERICAN JOURNAL OF MANAGED CARE, 2020, 26 (01): : E7 - +
  • [10] Predicting 30-Day Pneumonia Readmissions Using Electronic Health Record Data
    Makam, Anil N.
    Nguyen, Oanh Kieu
    Clark, Christopher
    Zhang, Song
    Xie, Bin
    Weinreich, Mark
    Mortensen, Eric M.
    Halm, Ethan A.
    JOURNAL OF HOSPITAL MEDICINE, 2017, 12 (04) : 209 - 216