Transcendence in positive characteristic and special values of hypergeometric functions

被引:3
|
作者
Thakur, Dinesh S. [1 ]
Wen, Zhi-Ying [2 ]
Yao, Jia-Yan [2 ]
Zhao, Liang [2 ]
机构
[1] Univ Arizona, Dept Math, Tucson, AZ 85721 USA
[2] Tsinghua Univ, Dept Math, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
GOSS GAMMA-FUNCTION; FUNCTION-FIELDS; CRITERION;
D O I
10.1515/CRELLE.2011.055
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a simple transcendence criterion suitable for function field arithmetic. We apply it to show the transcendence of special values at non-zero rational arguments (or more generally, at algebraic arguments which generate extension of the rational function field with less than q places at infinity) of the entire hypergeometric functions in the function field (over F(q)) context, and to obtain a new proof of the transcendence of special values at non-natural p-adic integers of the Carlitz-Goss gamma function. We also characterize in the balanced case the algebraicity of hypergeometric functions, giving an analog of the result of F. R. Villegas, based on Beukers-Heckman results and E. Landau's method in the classical hypergeometric case.
引用
收藏
页码:135 / 171
页数:37
相关论文
共 50 条