Automatic unmixing of MODIS multi-temporal data for inter-annual monitoring of land use at a regional scale (Tensift, Morocco)

被引:9
|
作者
Benhadj, Iskander [1 ]
Duchemin, Benoit [1 ]
Maisongrande, Philippe [1 ]
Simonneaux, Vincent [1 ,2 ]
Khabba, Said [2 ]
Chehbouni, Abdelghani [1 ,2 ]
机构
[1] CESBIO Ctr Etud Spatiales Biosphere, F-31401 Toulouse 9, France
[2] Univ Cadi Ayyad, FSSM Fac Sci Semlalia, Marrakech, Morocco
关键词
COVER CHANGE; VEGETATION; AVHRR; CLASSIFICATION; PHENOLOGY; IMAGES; MODEL; INDEX; WHEAT;
D O I
10.1080/01431161.2011.564220
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
The objective of this study is to develop an approach for monitoring land use over the semi-arid Tensift-Marrakech plain, a 3000 km(2) intensively cropped area in Morocco. In this objective, the linear unmixing method is adapted to process a 6-year archive of Moderate Resolution Imaging Spectroradiometer (MODIS) normalized difference vegetation index (NDVI) 16-day composite data at 250 m spatial resolution. The result of the processing is a description of land use in terms of fractions of three predominant classes: orchard, non-cultivated area and annual crop. The typical signatures of land classes - endmembers - are retrieved on a yearly basis using an automated algorithm that detects the most pure pixels in the study area. The algorithm first extracts typical NDVI profiles as potential endmembers, then selects the profiles that have the best ability to reproduce the variability of MODIS NDVI time series over the study area. The endmembers appear stable over the 6 years of study and coherent with the vegetation seasonality of the three targeted land classes. Validation data allow us to quantify the error on land-use fractions to about 0.10 at 1 km resolution. Land-use estimates are consistent in space and time: the orchard class is stable, and differences in water availability (irrigation and rainfall) partly explain a part of the inter-annual variations observed for the annual crop class. The advantages and drawbacks of the approach are discussed.
引用
收藏
页码:1325 / 1348
页数:24
相关论文
共 50 条
  • [1] Estimating inter-annual diversity of seasonal agricultural area using multi-temporal resourcesat data
    Sreenivas, K.
    Sekhar, N. Seshadri
    Saxena, Manoj
    Paliwal, R.
    Pathak, S.
    Porwal, M. C.
    Fyzee, M. A.
    Rao, S. V. C. Kameswara
    Wadodkar, M.
    Anasuya, T.
    Murthy, M. S. R.
    Ravisankar, T.
    Dadhwal, V. K.
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2015, 161 : 433 - 442
  • [2] Impacts of inter-annual cropland changes on land surface temperature based on multi-temporal thermal infrared images
    Chen, Xinran
    Gu, Xingfa
    Liu, Peizhuo
    Wang, Dakang
    Mumtaz, Faisal
    Shi, Shuaiyi
    Liu, Qixin
    Zhan, Yulin
    INFRARED PHYSICS & TECHNOLOGY, 2022, 122
  • [3] Monitoring tropical peatland ecosystem in regional scale using multi-temporal MODIS data: Present possibilities and future challenges
    Setiawan, Y.
    Pawitan, H.
    Prasetyo, L. B.
    Permatasari, P. A.
    3RD INTERNATIONAL SYMPOSIUM ON LAPAN-IPB SATELLITE FOR FOOD SECURITY AND ENVIRONMENTAL MONITORING 2016, 2017, 54
  • [4] Land use/land cover classification and its change detection using multi-temporal MODIS NDVI data
    M. Usman
    R. Liedl
    M. A. Shahid
    A. Abbas
    Journal of Geographical Sciences, 2015, 25 : 1479 - 1506
  • [5] Land use/land cover classification and its change detection using multi-temporal MODIS NDVI data
    Usman, M.
    Liedl, R.
    Shahid, M. A.
    Abbas, A.
    JOURNAL OF GEOGRAPHICAL SCIENCES, 2015, 25 (12) : 1479 - 1506
  • [6] Evaluating the Relationships of Inter-Annual Farmland Vegetation Dynamics with Biodiversity Using Multi-Spatial and Multi-Temporal Remote Sensing Data
    Alavi, Niloofar
    King, Douglas
    REMOTE SENSING, 2020, 12 (09)
  • [7] Monitoring Winter Wheat Freeze Injury Using Multi-Temporal MODIS Data
    Feng Mei-chen
    Yang Wu-de
    Cao Liang-liang
    Ding Guang-wei
    AGRICULTURAL SCIENCES IN CHINA, 2009, 8 (09): : 1053 - 1062
  • [8] Monitoring Winter Wheat Freeze Injury Using Multi-Temporal MODIS Data
    FENG Mei-chen1
    Agricultural Sciences in China, 2009, 8 (09) : 1053 - 1062
  • [9] Land-cover change detection using multi-temporal MODIS NDVI data
    Lunetta, Ross S.
    Knight, Joseph F.
    Ediriwickrema, Jayantha
    Lyon, John G.
    Worthy, L. Dorsey
    REMOTE SENSING OF ENVIRONMENT, 2006, 105 (02) : 142 - 154
  • [10] Use of multi-temporal remotely sensed data for monitoring land reclamation in Sudbury, Ontario (Canada)
    Abuelgasim, A
    Chung, CJ
    Champagne, C
    Staenz, K
    Monet, S
    Fung, K
    2005 International Workshop on the Analysis on Multi-Temporal Remote Sensing Images, 2005, : 229 - 235