NUMERICAL ASPECTS OF THE NONLINEAR SCHRODINGER EQUATION IN THE SEMICLASSICAL LIMIT IN A SUPERCRITICAL REGIME

被引:5
|
作者
Carles, Remi [1 ]
Mohammadi, Bijan
机构
[1] CNRS, F-34095 Montpellier, France
来源
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 2011年 / 45卷 / 05期
关键词
Nonlinear Schrodinger equation; semiclassical limit; compressible Euler equation; numerical simulation; BOSE-EINSTEIN CONDENSATION; WKB APPROXIMATION; ENTROPY SOLUTIONS; GEOMETRIC OPTICS; WELL-POSEDNESS; CAUCHY-PROBLEM; TIME; SPACE; SCHEME;
D O I
10.1051/m2an/2011005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study numerically the semiclassical limit for the nonlinear Schrodinger equation thanks to a modification of the Madelung transform due to Grenier. This approach allows for the presence of vacuum. Even if the mesh size and the time step do not depend on the Planck constant, we recover the position and current densities in the semiclassical limit, with a numerical rate of convergence in accordance with the theoretical results, before shocks appear in the limiting Euler equation. By using simple projections, the mass and the momentum of the solution are well preserved by the numerical scheme, while the variation of the energy is not negligible numerically. Experiments suggest that beyond the critical time for the Euler equation, Grenier's approach yields smooth but highly oscillatory terms.
引用
收藏
页码:981 / 1008
页数:28
相关论文
共 50 条