An algorithm to detect sea ice leads by using AMSR-E passive microwave imagery

被引:55
|
作者
Roehrs, J. [1 ]
Kaleschke, L. [1 ]
机构
[1] Univ Hamburg, Inst Meereskunde, D-20146 Hamburg, Germany
来源
CRYOSPHERE | 2012年 / 6卷 / 02期
关键词
ARCTIC AMPLIFICATION; FREQUENCIES; OCEAN;
D O I
10.5194/tc-6-343-2012
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
Leads are major sites of energy fluxes and brine releases at the air-ocean interface of sea-ice covered oceans. This study presents an algorithm to detect leads wider than 3 km in the entire Arctic Ocean. The algorithm detects 50 % of the lead area that was visible in optical MODIS satellite images. Passive microwave imagery from the Advanced Microwave Scanning Radiometer - Earth Observation System (AMSR-E) is used, allowing daily observations due to the fact that AMSR-E does not depend on daylight or cloud conditions. Using the unique signatures of thin ice in the brightness temperature ratio between the 89 GHz and 19 GHz channels, the algorithm is able to detect thin ice areas in the ice cover and is optimized to detect leads. Leads are mapped for the period from 2002 to 2011 excluding the summer months, and validated qualitatively by using MODIS, Envisat ASAR, and CryoSat-2 data. Several frequently recurring large scale lead patterns are found, especially in regions where sea ice is known to drift out of the Arctic Ocean.
引用
收藏
页码:343 / 352
页数:10
相关论文
共 50 条
  • [1] A new soil freeze/thaw discriminant algorithm using AMSR-E passive microwave imagery
    Zhao, Tianjie
    Zhang, Lixin
    Jiang, Lingmei
    Zhao, Shaojie
    Chai, Linna
    Jin, Rui
    HYDROLOGICAL PROCESSES, 2011, 25 (11) : 1704 - 1716
  • [2] Fusing AMSR-E and QuikSCAT Imagery for Improved Sea Ice Recognition
    Yu, Peter
    Clausi, David A.
    Howell, Stephen E. L.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2009, 47 (07): : 1980 - 1989
  • [3] An Analysis of Arctic Sea Ice Leads Retrieved from AMSR-E/AMSR2
    Li, Ming
    Liu, Jiping
    Qu, Meng
    Zhang, Zhanhai
    Liang, Xi
    REMOTE SENSING, 2022, 14 (04)
  • [4] Assessment of EOS aqua AMSR-E Arctic Sea ice concentrations using Landsat-7 and airborne microwave imagery
    Cavalieri, Donald J.
    Markus, Thorsten
    Hall, Dorothy K.
    Gasiewski, Albin J.
    Klein, Marian
    Ivanoff, Alvaro
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2006, 44 (11): : 3057 - 3069
  • [5] High-resolution sea-ice motions from AMSR-E imagery
    Meier, Walter N.
    Dai, Mingrui
    ANNALS OF GLACIOLOGY, VOL 44, 2006, 2006, 44 : 352 - +
  • [6] An algorithm for retrieving soil moisture from AMSR-E passive microwave data
    Mao K.
    Hu D.
    Huang J.
    Zhang W.
    Zhang L.
    Zou J.
    Tang H.
    Gaojishu Tongxin/Chinese High Technology Letters, 2010, 20 (06): : 651 - 659
  • [7] THIN SEA ICE IDENTIFICATION IN THE KARA SEA USING AMSR-E DATA
    von Lerber, A.
    Makynen, M.
    Simila, M.
    Sievinen, P.
    Hallikainen, M. T.
    2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2012, : 4477 - 4480
  • [8] AMSR/AMSR-E sea surface temperature algorithm development
    Shibata, A
    Imaoka, K
    Kachi, M
    Fujimoto, Y
    Mutoh, T
    IGARSS 2003: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS I - VII, PROCEEDINGS: LEARNING FROM EARTH'S SHAPES AND SIZES, 2003, : 672 - 673
  • [9] Assessment of the AMSR-E sea ice concentration product at the ice edge using RADARSAT-1 and MODIS imagery
    Heinrichs, John F.
    Cavalieri, Donald J.
    Markus, Thorsten
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2006, 44 (11): : 3070 - 3080
  • [10] Improved mapping of sea ice production in the Arctic Ocean using AMSR-E thin ice thickness algorithm
    Iwamoto, Katsushi
    Ohshima, Kay I.
    Tamura, Takeshi
    JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2014, 119 (06) : 3574 - 3594