Dual-comb spectroscopy for high-temperature reaction kinetics

被引:40
|
作者
Pinkowski, Nicolas H. [1 ]
Ding, Yiming [1 ]
Strand, Christopher L. [1 ]
Hanson, Ronald K. [1 ]
Horvath, Raphael [2 ]
Geiser, Markus [2 ]
机构
[1] Stanford Univ, Dept Mech Engn, High Temp Gasdynam Lab, Stanford, CA USA
[2] IRsweep, CH-8712 Staefa, Switzerland
关键词
propyne; dual-comb spectroscopy; reaction kinetics; time-resolved; laser absorption spectroscopy; shock tubes; high temperature; MIDINFRARED ABSORPTION-SPECTRA; HIGH-PRESSURE; DISPERSION; MOLECULES; ETHYLENE; METHANOL; CELL;
D O I
10.1088/1361-6501/ab6ecc
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In the current study, a quantum-cascade-laser-based dual-comb spectrometer (DCS) was used to paint a detailed picture of a 1.0 ms high-temperature reaction between propyne and oxygen. The DCS interfaced with a shock tube to provide pre-ignition conditions of 1225 K, 2.8 atm, and 2% p-C3H4/18% O-2/Ar. The spectrometer consisted of two free-running, non-stabilized frequency combs each emitting at 179 wavelengths between 1174 and 1233 cm(-1). A free spectral range, f(r), of 9.86 GHz and a difference in comb spacing, Delta f(r), of 5 MHz, enabled a theoretical time resolution of 0.2 mu s but the data was time-integrated to 4 mu s to improve SNR. The accuracy of the spectrometer was monitored using a suite of independent laser diagnostics and good agreement observed. Key challenges remain in the fitting of available high-temperature spectroscopic models to the observed spectra of a post-ignition environment.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Dual-comb spectroscopy
    Coddington, Ian
    Newbury, Nathan
    Swann, William
    OPTICA, 2016, 3 (04): : 414 - 426
  • [2] Fast Curing Reaction Monitoring with Dual-Comb Spectroscopy
    Eigenmann, Florian
    Horvath, Raphael
    SPECTROSCOPY, 2019, 34 (08) : 95 - 95
  • [3] Thermometry and speciation for high-temperature and -pressure methane pyrolysis using shock tubes and dual-comb spectroscopy
    Pinkowski, Nicolas H.
    Biswas, Pujan
    Shao, Jiankun
    Strand, Christopher L.
    Hanson, Ronald K.
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2021, 32 (12)
  • [4] Dual-Comb Photoacoustic Spectroscopy
    Wildi, Thibault
    Voumard, Thibault
    Brasch, Victor
    Yilmaz, Guerkan
    Herr, Tobias
    2020 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2020,
  • [5] Dual-comb photoacoustic spectroscopy
    Jacob T. Friedlein
    Esther Baumann
    Kimberly A. Briggman
    Gabriel M. Colacion
    Fabrizio R. Giorgetta
    Aaron M. Goldfain
    Daniel I. Herman
    Eli V. Hoenig
    Jeeseong Hwang
    Nathan R. Newbury
    Edgar F. Perez
    Christopher S. Yung
    Ian Coddington
    Kevin C. Cossel
    Nature Communications, 11
  • [6] Dual-comb photothermal spectroscopy
    Qiang Wang
    Zhen Wang
    Hui Zhang
    Shoulin Jiang
    Yingying Wang
    Wei Jin
    Wei Ren
    Nature Communications, 13
  • [7] Dual-comb photoacoustic spectroscopy
    Friedlein, Jacob T.
    Baumann, Esther
    Briggman, Kimberly A.
    Colacion, Gabriel M.
    Giorgetta, Fabrizio R.
    Goldfain, Aaron M.
    Herman, Daniel I.
    Hoenig, Eli V.
    Hwang, Jeeseong
    Newbury, Nathan R.
    Perez, Edgar F.
    Yung, Christopher S.
    Coddington, Ian
    Cossel, Kevin C.
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [8] Compressive dual-comb spectroscopy
    Kawai, Akira
    Kageyama, Takahiro
    Horisaki, Ryoichi
    Ideguchi, Takuro
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [9] Subsampling dual-comb spectroscopy
    Sterczewski, Lukasz A.
    Bagheri, Mahmood
    OPTICS LETTERS, 2020, 45 (17) : 4895 - 4898
  • [10] Dual-comb optomechanical spectroscopy
    Ren, Xinyi
    Pan, Jin
    Yan, Ming
    Sheng, Jiteng
    Yang, Cheng
    Zhang, Qiankun
    Ma, Hui
    Wen, Zhaoyang
    Huang, Kun
    Wu, Haibin
    Zeng, Heping
    NATURE COMMUNICATIONS, 2023, 14 (01)