NIK1-mediated translation suppression functions as a plant antiviral immunity mechanism

被引:164
|
作者
Zorzatto, Cristiane [1 ,2 ]
Machado, Joao Paulo B. [1 ,2 ]
Lopes, Kenia V. G. [1 ,2 ]
Nascimento, Kelly J. T. [1 ,2 ]
Pereira, Welison A. [1 ,2 ]
Brustolini, Otavio J. B. [1 ,2 ]
Reis, Pedro A. B. [1 ,2 ]
Calil, Iara P. [1 ,2 ]
Deguchi, Michihito [1 ,2 ]
Sachetto-Martins, Gilberto [2 ,3 ]
Gouveia, Bianca C. [1 ,2 ]
Loriato, Virgilio A. P. [1 ,2 ]
Silva, Marcos A. C. [2 ]
Silva, Fabyano F. [4 ]
Santos, Anesia A. [2 ]
Chory, Joanne [2 ,5 ,6 ]
Fontes, Elizabeth P. B. [1 ,2 ]
机构
[1] Univ Fed Vicosa, Bioagro, Natl Inst Sci & Technol Plant Pest Interact, Dept Bioquim & Biol Mol, BR-36570000 Vicosa, MG, Brazil
[2] Univ Fed Vicosa, Bioagro, Natl Inst Sci & Technol Plant Pest Interact, BR-36570000 Vicosa, MG, Brazil
[3] Univ Fed Rio de Janeiro, Dept Genet, BR-21944970 Rio De Janeiro, Brazil
[4] Univ Fed Vicosa, Dept Zootecnia, BR-36570000 Vicosa, MG, Brazil
[5] Salk Inst Biol Studies, Howard Hughes Med Inst, La Jolla, CA 92037 USA
[6] Salk Inst Biol Studies, Plant Biol Lab, La Jolla, CA 92037 USA
基金
美国国家卫生研究院;
关键词
NUCLEAR SHUTTLE PROTEIN; DIFFERENTIAL EXPRESSION ANALYSIS; PUTATIVE TUMOR-SUPPRESSOR; GEMINIVIRUS; KINASE; ARABIDOPSIS; DEFENSE; STRESS; NIK; SEQUENCES;
D O I
10.1038/nature14171
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Plants and plant pathogens are subject to continuous co-evolutionary pressure for dominance, and the outcomes of these interactions can substantially impact agriculture and food security'. In virusplant interactions, one of the major mechanisms for plant antiviral immunity relies on RNA silencing, which is often suppressed by co-evolving virus suppressors, thus enhancing viral pathogenicity in susceptible hosts'. In addition, plants use the nucleotide-binding and leucine-rich repeat (NB-LRR) domain-containing resistance proteins, which recognize viral effectors to activate effector-triggered immunity in a defence mechanism similar to that employed in nonviral infections'''. Unlike most eukaryotic organisms, plants are not known to activate mechanisms of host global translation suppression to fight viruses'''. Here we demonstrate in Arabidopsis that the constitutive activation of NIK1, a leucine-rich repeat receptor-like kinase (LRR-RLK) identified as a virulence target of the begomovirus nuclear shuttle protein (NSP)(4-6), leads to global translation suppression and translocation of the downstream component RPL 10 to the nucleus, where it interacts with a newly identified MYB-like protein, Lb-INTERACTING MYB DOMAIN-CONTAINING PROTEIN (LIMYB), to downregulate translational machinery genes fully. LIMYB overexpression represses ribosomal protein genes at the transcriptional level, resulting in protein synthesis inhibition, decreased viral messenger RNA association with polysome fractions and enhanced tolerance to begomovirus. By contrast, the loss of LIMYB function releases the repression of translation-related genes and increases susceptibility to virus infection. Therefore, LIMYB links immune receptor LRR-RLK activation to global translation suppression as an antiviral immunity strategy in plants.
引用
收藏
页码:679 / U227
页数:19
相关论文
共 50 条
  • [1] NIK1-mediated translation suppression functions as a plant antiviral immunity mechanism
    Cristiane Zorzatto
    João Paulo B. Machado
    Kênia V. G. Lopes
    Kelly J. T. Nascimento
    Welison A. Pereira
    Otávio J. B. Brustolini
    Pedro A. B. Reis
    Iara P. Calil
    Michihito Deguchi
    Gilberto Sachetto-Martins
    Bianca C. Gouveia
    Virgílio A. P. Loriato
    Marcos A. C. Silva
    Fabyano F. Silva
    Anésia A. Santos
    Joanne Chory
    Elizabeth P. B. Fontes
    Nature, 2015, 520 : 679 - 682
  • [2] NIK1, a host factor specialized in antiviral defense or a novel general regulator of plant immunity?
    Machado, Joao P. B.
    Brustolini, Otavio J. B.
    Mendes, Giselle C.
    Santos, Anesia A.
    Fontes, Elizabeth P. B.
    BIOESSAYS, 2015, 37 (11) : 1236 - 1242
  • [3] NBR1-mediated antiviral xenophagy in plant immunity
    Hafren, Anders
    Hofius, Daniel
    AUTOPHAGY, 2017, 13 (11) : 2000 - 2001
  • [4] Mechanism of Th1-mediated antiviral mucosal immunity
    Iijima, Norifumi
    Iwasaki, Akiko
    JOURNAL OF IMMUNOLOGY, 2006, 176 : S221 - S222
  • [5] RNA Interference Functions as an Antiviral Immunity Mechanism in Mammals
    Li, Yang
    Lu, Jinfeng
    Han, Yanhong
    Fan, Xiaoxu
    Ding, Shou-Wei
    SCIENCE, 2013, 342 (6155) : 231 - 234
  • [6] Lost in Translation: An Antiviral Plant Defense Mechanism Revealed
    Nicaise, Valerie
    CELL HOST & MICROBE, 2015, 17 (04) : 417 - 419
  • [7] Structure and Mechanism of the CMR Complex for CRISPR-Mediated Antiviral Immunity
    Zhang, Jing
    Rouillon, Christophe
    Kerou, Melina
    Reeks, Judith
    Brugger, Kim
    Graham, Shirley
    Reimann, Julia
    Cannone, Giuseppe
    Liu, Huanting
    Albers, Sonja-Verena
    Naismith, James H.
    Spagnolo, Laura
    White, Malcolm F.
    MOLECULAR CELL, 2012, 45 (03) : 303 - 313
  • [8] Mechanism of suppression of cell-mediated immunity by measles virus
    Karp, CL
    Wysocka, M
    Wahl, LM
    Ahearn, JM
    Cuomo, PJ
    Sherry, B
    Trinchieri, G
    Griffin, DE
    SCIENCE, 1996, 273 (5272) : 228 - 231
  • [9] Negative regulation of TBK1-mediated antiviral immunity
    Zhao, Wei
    FEBS LETTERS, 2013, 587 (06) : 542 - 548
  • [10] Revisiting IRF1-mediated antiviral innate immunity
    Zhou, Hao
    Tang, Yan-Dong
    Zheng, Chunfu
    CYTOKINE & GROWTH FACTOR REVIEWS, 2022, 64 : 1 - 6