Frequent Itemsets Mining in Data Streams Using Reconfigurable Hardware

被引:3
|
作者
Bustio, Lazaro [1 ,2 ]
Cumplido, Rene [2 ]
Hernandez, Raudel [1 ]
Bande, Jose M. [1 ]
Feregrino, Claudia [2 ]
机构
[1] Adv Technol Applicat Ctr, 7a 21812 E-218 & 222 Rpto Siboney, Havana 12200, Cuba
[2] Natl Inst Astrophys Opt & Elect, Luis Enrique Erro 1, Puebla 72840, Mexico
来源
关键词
Data mining; Frequent itemsets mining; Data streams; Reconfigurable hardware; Parallel algorithms; TOP-K ELEMENTS; ALGORITHMS; ISSUES;
D O I
10.1007/978-3-319-39315-5_3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Data streams are unbounded and infinite flows of data arriving at high rates which cannot be stored for offline processing. Because of this, classical approaches for Data Mining cannot be used straightforwardly in data stream scenario. This paper introduces a single-pass hardware-based algorithm for frequent itemsets mining on data streams that uses the top-k frequent 1-itemsets. Experimental results of the hardware implementation of the proposed algorithm are also presented and discussed.
引用
收藏
页码:32 / 45
页数:14
相关论文
共 50 条
  • [1] Approximate Frequent Itemsets Mining on Data Streams Using Hashing and Lexicographic Order in Hardware
    Bustio-Martinez, Lazaro
    Cumplido, Rene
    Letras-Luna, Martin
    Feregrino Uribe, Claudia
    Hernandez-Leon, Raudel
    Bande-Serrano, Jose M.
    2017 IEEE 8TH LATIN AMERICAN SYMPOSIUM ON CIRCUITS & SYSTEMS (LASCAS), 2017,
  • [2] On the design of hardware-software architectures for frequent itemsets mining on data streams
    Lázaro Bustio-Martínez
    René Cumplido
    Raudel Hernández-León
    José M. Bande-Serrano
    Claudia Feregrino-Uribe
    Journal of Intelligent Information Systems, 2018, 50 : 415 - 440
  • [3] On the design of hardware-software architectures for frequent itemsets mining on data streams
    Bustio-Martinez, Lazaro
    Cumplido, Rene
    Hernandez-Leon, Raudel
    Bande-Serrano, Jose M.
    Feregrino-Uribe, Claudia
    JOURNAL OF INTELLIGENT INFORMATION SYSTEMS, 2018, 50 (03) : 415 - 440
  • [4] MFIS - Mining frequent itemsets on data streams
    Xie, Zhi-jun
    Chen, Hong
    Li, Cuiping
    ADVANCED DATA MINING AND APPLICATIONS, PROCEEDINGS, 2006, 4093 : 1085 - 1093
  • [5] Mining Recent Frequent Itemsets in Data Streams
    Li, Kun
    Wang, Yong-yan
    Ellahi, Manzoor
    Wang, Hong-an
    FIFTH INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY, VOL 4, PROCEEDINGS, 2008, : 353 - 358
  • [6] Using hashing and lexicographic order for Frequent Itemsets Mining on data streams
    Bustio-Martinez, Lazaro
    Letras-Luna, Martin
    Cumplido, Rene
    Hernandez-Leon, Raudel
    Feregrino-Uribe, Claudia
    Bande-Serrano, Jose M.
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2019, 125 : 58 - 71
  • [7] Fast Mining of Closed Frequent Itemsets in Data Streams
    Mao Yimin
    Chen Zhigang
    Liu Lixin
    INFORMATION TECHNOLOGY APPLICATIONS IN INDUSTRY, PTS 1-4, 2013, 263-266 : 231 - +
  • [8] Mining maximal frequent itemsets from data streams
    Mao, Guojun
    Wu, Xindong
    Zhu, Xingquan
    Chen, Gong
    Liu, Chunnian
    JOURNAL OF INFORMATION SCIENCE, 2007, 33 (03) : 251 - 262
  • [9] An efficient approach to mining frequent itemsets on data streams
    Ansari, Sara
    Sadreddini, Mohammad Hadi
    World Academy of Science, Engineering and Technology, 2009, 37 : 489 - 495
  • [10] Mining of Frequent Itemsets from Streams of Uncertain Data
    Leung, Carson Kai-Sang
    Hao, Boyu
    ICDE: 2009 IEEE 25TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING, VOLS 1-3, 2009, : 1663 - 1670