Integration of transcriptomic data identifies key hallmark genes in hypertrophic cardiomyopathy

被引:5
|
作者
Xu, Jing [1 ]
Liu, Xiangdong [2 ]
Dai, Qiming [3 ]
机构
[1] Southeast Univ, ZhongDa Hosp, Dept Clin Lab, Nanjing, Peoples R China
[2] Southeast Univ, Inst Life Sci, Nanjing, Peoples R China
[3] Southeast Univ, ZhongDa Hosp, Dept Cardiol, Nanjing, Peoples R China
关键词
Hypertrophic cardiomyopathy; Microarray; RNA-Seq; Classification; JAK2; FEATURE-SELECTION; EXPRESSION; CYTOSCAPE; PATIENT; MODELS;
D O I
10.1186/s12872-021-02147-7
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background Hypertrophic cardiomyopathy (HCM) represents one of the most common inherited heart diseases. To identify key molecules involved in the development of HCM, gene expression patterns of the heart tissue samples in HCM patients from multiple microarray and RNA-seq platforms were investigated. Methods The significant genes were obtained through the intersection of two gene sets, corresponding to the identified differentially expressed genes (DEGs) within the microarray data and within the RNA-Seq data. Those genes were further ranked using minimum-Redundancy Maximum-Relevance feature selection algorithm. Moreover, the genes were assessed by three different machine learning methods for classification, including support vector machines, random forest and k-Nearest Neighbor. Results Outstanding results were achieved by taking exclusively the top eight genes of the ranking into consideration. Since the eight genes were identified as candidate HCM hallmark genes, the interactions between them and known HCM disease genes were explored through the protein-protein interaction (PPI) network. Most candidate HCM hallmark genes were found to have direct or indirect interactions with known HCM diseases genes in the PPI network, particularly the hub genes JAK2 and GADD45A. Conclusions This study highlights the transcriptomic data integration, in combination with machine learning methods, in providing insight into the key hallmark genes in the genetic etiology of HCM.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Integration of transcriptomic data identifies key hallmark genes in hypertrophic cardiomyopathy
    Jing Xu
    Xiangdong Liu
    Qiming Dai
    [J]. BMC Cardiovascular Disorders, 21
  • [2] Transcriptomics data integration and analysis to uncover hallmark genes in hypertrophic cardiomyopathy
    Chen, Peng
    Yawar, Warda
    Farooqui, Ayesha Rida
    Ali, Saqib
    Lathiya, Nida
    Ghous, Zeeshan
    Sultan, Rizwana
    Alhomrani, Majid
    Alghamdi, Saleh A.
    Almalki, Abdulraheem Ali
    Alghamdi, Ahmad A.
    ALSuhaymi, Naif
    Hashmi, Muhammad Razi Ul Islam
    Hameed, Yasir
    [J]. AMERICAN JOURNAL OF TRANSLATIONAL RESEARCH, 2024, 16 (02): : 637 - 653
  • [3] Integration of gene expression data identifies key genes and pathways in colorectal cancer
    Hozhabri, Hossein
    Lashkari, Ali
    Razavi, Seyed-Morteza
    Mohammadian, Ali
    [J]. MEDICAL ONCOLOGY, 2021, 38 (01)
  • [4] Integration of gene expression data identifies key genes and pathways in colorectal cancer
    Hossein Hozhabri
    Ali Lashkari
    Seyed-Morteza Razavi
    Ali Mohammadian
    [J]. Medical Oncology, 2021, 38
  • [5] Transcriptomic Comparison of Human Peripartum and Dilated Cardiomyopathy Identifies Differences in Key Disease Pathways
    Taylor, Jude
    Yeung, Anna C. Y.
    Ashton, Anthony
    Faiz, Alen
    Guryev, Victor
    Fang, Bernard
    Lal, Sean
    Grosser, Mark
    dos Remedios, Cristobal G.
    Braet, Filip
    McLachlan, Craig S.
    Li, Amy
    [J]. JOURNAL OF CARDIOVASCULAR DEVELOPMENT AND DISEASE, 2023, 10 (05)
  • [6] Machine learning-assisted integration of single cell transcriptomic data identifies potential cardiomyocyte maturation genes
    Hegenbarth, Jana-Charlotte
    De Majo, Federica
    Spano, Giulia
    Olieslagers, Serve
    Esfandyari, Dena
    Tiburcy, Malte
    Zimmermann, Wolfram-Hubertus
    Stoll, Monika
    de Windt, Leon
    [J]. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY, 2022, 173 : S47 - S47
  • [7] Multi-omics integration identifies key upstream regulators of pathomechanisms in hypertrophic cardiomyopathy due to truncating MYBPC3 mutations
    Pei, J.
    Schuldt, M.
    Nagyova, E.
    Gu, Z.
    el Bouhaddani, S.
    Yiangou, L.
    Jansen, M.
    Calis, J. J. A.
    Dorsch, L. M.
    Blok, C. Snijders
    van den Dungen, N. A. M.
    Lansu, N.
    Boukens, B. J.
    Efimov, I. R.
    Michels, M.
    Verhaar, M. C.
    de Weger, R.
    Vink, A.
    van Steenbeek, F. G.
    Baas, A. F.
    Davis, R. P.
    Uh, H. W.
    Kuster, D. W. D.
    Cheng, C.
    Mokry, M.
    van der Velden, J.
    Asselbergs, F. W.
    Harakalova, M.
    [J]. CLINICAL EPIGENETICS, 2021, 13 (01)
  • [8] Multi-omics integration identifies key upstream regulators of pathomechanisms in hypertrophic cardiomyopathy due to truncating MYBPC3 mutations
    J. Pei
    M. Schuldt
    E. Nagyova
    Z. Gu
    S. el Bouhaddani
    L. Yiangou
    M. Jansen
    J. J. A. Calis
    L. M. Dorsch
    C. Snijders Blok
    N. A. M. van den Dungen
    N. Lansu
    B. J. Boukens
    I. R. Efimov
    M. Michels
    M. C. Verhaar
    R. de Weger
    A. Vink
    F. G. van Steenbeek
    A. F. Baas
    R. P. Davis
    H. W. Uh
    D. W. D. Kuster
    C. Cheng
    M. Mokry
    J. van der Velden
    F. W. Asselbergs
    M. Harakalova
    [J]. Clinical Epigenetics, 2021, 13
  • [9] Hypertrophic Cardiomyopathy as an Oligogenic Disease: Transcriptomic Arguments
    N. M. Baulina
    I. S. Kiselev
    O. S. Chumakova
    O. O. Favorova
    [J]. Molecular Biology, 2020, 54 : 840 - 850
  • [10] Hypertrophic Cardiomyopathy as an Oligogenic Disease: Transcriptomic Arguments
    Baulina, N. M.
    Kiselev, I. S.
    Chumakova, O. S.
    Favorova, O. O.
    [J]. MOLECULAR BIOLOGY, 2020, 54 (06) : 840 - 850