Machine learning classification of Gaia Data Release 2

被引:18
|
作者
Bai, Yu [1 ]
Liu, Ji-Feng [1 ,2 ]
Wang, Song [1 ]
机构
[1] Chinese Acad Sci, Natl Astron Observ, Key Lab Opt Astron, Beijing 100101, Peoples R China
[2] Univ Chinese Acad Sci, Coll Astron & Space Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
methods: data analysis; stars: general; Gaia catalog; ROBUST MORPHOLOGICAL CLASSIFICATION; SUPPORT VECTOR MACHINES; FIELD;
D O I
10.1088/1674-4527/18/10/118
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Machine learning has increasingly gained more popularity with its incredibly powerful ability to make predictions or calculate suggestions for large amounts of data. We apply machine learning classification to 85 613 922 objects in the Gaia Data Release 2, based on a combination of Pan-STARRS 1 and AllWISE data. The classification results are cross-matched with the Simbad database, and the total accuracy is 91.9%. Our sample is dominated by stars, similar to 98%, and galaxies make up 2%. For the objects with negative parallaxes, about 2.5% are galaxies and QSOs, while about 99.9% are stars if the relative parallax uncertainties are smaller than 0.2. Our result implies that using the threshold of 0 < sigma(pi)/pi < 0.2 could yield a very clean stellar sample.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Machine learning classification of Gaia Data Release 2
    Yu Bai
    Ji-Feng Liu
    Song Wang
    Research in Astronomy and Astrophysics, 2018, 18 (10) : 3 - 6
  • [2] Quasar and galaxy classification in Gaia Data Release 2
    Bailer-Jones, Coryn A. L.
    Fouesneau, Morgan
    Andrae, Rene
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 490 (04) : 5615 - 5633
  • [3] Machine-learning Regression of Extinction in the Second Gaia Data Release
    Bai, Yu
    Liu, JiFeng
    Wang, YiLun
    Wang, Song
    ASTRONOMICAL JOURNAL, 2020, 159 (03):
  • [4] Gaia Data Release 2
    Forveille, Thierry
    Kotak, Rubina
    Shore, Steve
    Tolstoy, Eline
    ASTRONOMY & ASTROPHYSICS, 2018, 616
  • [5] Gaia Data Release 2
    Arenou, F. (Frederic.arenou@obspm.fr), 1600, EDP Sciences (616):
  • [6] Machine-learning Regression of Stellar Effective Temperatures in the Second Gaia Data Release
    Bai, Yu
    Lu, JiFeng
    Bai, ZhongRui
    Wang, Song
    Fan, DongWei
    ASTRONOMICAL JOURNAL, 2019, 158 (02):
  • [7] Gaia Data Release 2: Using Gaia parallaxes
    1600, EDP Sciences (616):
  • [9] Contrast sensitivities in the Gaia Data Release 2
    Brandeker, Alexis
    Cataldi, Gianni
    ASTRONOMY & ASTROPHYSICS, 2019, 621
  • [10] Gaia Data Release 2 Catalogue validation
    Arenou, F.
    Luri, X.
    Babusiaux, C.
    Fabricius, C.
    Helmi, A.
    Muraveva, T.
    Robin, A. C.
    Spoto, F.
    Vallenari, A.
    Antoja, T.
    Cantat-Gaudin, T.
    Jordi, C.
    Leclerc, N.
    Reyle, C.
    Romero-Gomez, M.
    Shih, I. -C.
    Soria, S.
    Barache, C.
    Bossini, D.
    Bragaglia, A.
    Breddels, M. A.
    Fabrizio, M.
    Lambert, S.
    Marrese, P. M.
    Massari, D.
    Moitinho, A.
    Robichon, N.
    Ruiz-Dern, L.
    Sordo, R.
    Veljanoski, J.
    Eyer, L.
    Jasniewicz, G.
    Pancino, E.
    Soubiran, C.
    Spagna, A.
    Tanga, P.
    Turon, C.
    Zurbach, C.
    ASTRONOMY & ASTROPHYSICS, 2018, 616