Antimonotonicity and multistability in a fractional order memristive chaotic oscillator

被引:13
|
作者
Chen, Chao-Yang [1 ,2 ,3 ]
Rajagopal, Karthikeyan [4 ]
Hamarash, Ibrahim Ismael [5 ]
Nazarimehr, Fahimeh [6 ]
Alsaadi, Fawaz E. [7 ]
Hayat, Tasawar [8 ,9 ]
机构
[1] Hunan Univ Sci & Technol, Sch Informat & Elect Engn, Xiangtan 411201, Peoples R China
[2] Boston Univ, Ctr Polymer Studies, Boston, MA 02215 USA
[3] Boston Univ, Dept Phys, 590 Commonwealth Ave, Boston, MA 02215 USA
[4] Def Univ, Ctr Nonlinear Dynam, Bishoftu, Ethiopia
[5] Univ Kurdistan Hewler, Dept Comp Sci & Engn, Erbil, Iraq
[6] Amirkabir Univ Technol, Dept Biomed Engn, 424 Hafez Ave, Tehran 158754413, Iran
[7] King Abdulaziz Univ, Fac Comp & IT, Dept Informat Technol, Jeddah, Saudi Arabia
[8] Quaid I Azam Univ 45320, Dept Math, Islamabad 44000, Pakistan
[9] King Abdulaziz Univ, NAAM Res Grp, Jeddah, Saudi Arabia
来源
基金
中国国家自然科学基金;
关键词
HIDDEN ATTRACTORS; SYSTEM; FLOWS; EQUILIBRIUM; CIRCUIT; LINE; COEXISTENCE; DYNAMICS; SURFACES; BEHAVIOR;
D O I
10.1140/epjst/e2019-800222-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A memristor diode bridge chaotic circuit is proposed in this paper. The proposed oscillator has only one nonlinear element in the form of memristor. Dynamical properties of the proposed oscillator are investigated. The fractional order model of the oscillator is designed using Grunwald-Letnikov (GL) method. Bifurcation diagrams are plotted which shows that the proposed oscillator exhibits multistability. Finally, the antimonotonicity property of the fractional order oscillator is discussed in detail with two control parameters. Such property has not been explored for fractional order systems before.
引用
收藏
页码:1969 / 1981
页数:13
相关论文
共 50 条
  • [1] Antimonotonicity and multistability in a fractional order memristive chaotic oscillator
    Chao-Yang Chen
    Karthikeyan Rajagopal
    Ibrahim Ismael Hamarash
    Fahimeh Nazarimehr
    Fawaz E. Alsaadi
    Tasawar Hayat
    [J]. The European Physical Journal Special Topics, 2019, 228 : 1969 - 1981
  • [2] Fracmemristor Oscillator: Fractional-Order Memristive Chaotic Circuit
    Pu, Yi-Fei
    Yu, Bo
    He, Qiu-Yan
    Yuan, Xiao
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2022, 69 (12) : 5219 - 5232
  • [3] Symmetry, Multistability and Antimonotonicity of a Shinriki Oscillator with Dual Memristors
    Cheng, Yizi
    Min, Fuhong
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2023, 33 (16):
  • [4] Controllable multistability of fractional-order memristive coupled chaotic map and its application in medical image encryption
    Ding, Dawei
    Wang, Jin
    Wang, Mouyuan
    Yang, Zongli
    Wang, Wei
    Niu, Yan
    Xu, Xinyue
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2023, 138 (10):
  • [5] Hidden multistability in four fractional-order memristive, meminductive and memcapacitive chaotic systems with bursting and boosting phenomena
    Borah, Manashita
    Roy, Binoy K.
    [J]. EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2021, 230 (7-8): : 1773 - 1783
  • [6] Controllable multistability of fractional-order memristive coupled chaotic map and its application in medical image encryption
    Dawei Ding
    Jin Wang
    Mouyuan Wang
    Zongli Yang
    Wei Wang
    Yan Niu
    Xinyue Xu
    [J]. The European Physical Journal Plus, 138
  • [7] Hidden multistability in four fractional-order memristive, meminductive and memcapacitive chaotic systems with bursting and boosting phenomena
    Manashita Borah
    Binoy K. Roy
    [J]. The European Physical Journal Special Topics, 2021, 230 : 1773 - 1783
  • [8] Generating hidden extreme multistability in memristive chaotic oscillator via micro-perturbation
    Wang, Lu
    Zhang, Sen
    Zeng, Yi-Cheng
    Li, Zhi-Jun
    [J]. ELECTRONICS LETTERS, 2018, 54 (13) : 808 - +
  • [9] Fracmemristor chaotic oscillator with multistable and antimonotonicity properties
    Lu, Haikong
    Petrzela, Jiri
    Gotthans, Tomas
    Rajagopal, Karthikeyan
    Jafari, Sajad
    Hussain, Iqtadar
    [J]. JOURNAL OF ADVANCED RESEARCH, 2020, 25 : 137 - 145
  • [10] Multistability analysis of a conformable fractional-order chaotic system
    Ma, Chenguang
    Jun, Mou
    Cao, Yinghong
    Liu, Tianming
    Wang, Jieyang
    [J]. PHYSICA SCRIPTA, 2020, 95 (07)